第二章地理空间数学基础分解课件.ppt

上传人(卖家):晟晟文业 文档编号:4397291 上传时间:2022-12-05 格式:PPT 页数:62 大小:3.29MB
下载 相关 举报
第二章地理空间数学基础分解课件.ppt_第1页
第1页 / 共62页
第二章地理空间数学基础分解课件.ppt_第2页
第2页 / 共62页
第二章地理空间数学基础分解课件.ppt_第3页
第3页 / 共62页
第二章地理空间数学基础分解课件.ppt_第4页
第4页 / 共62页
第二章地理空间数学基础分解课件.ppt_第5页
第5页 / 共62页
点击查看更多>>
资源描述

1、本章内容:一 地理空间参考二 空间数据投影三 空间坐标转换四 空间尺度一 地理空间参考解决地球的空间定位与数学描述问题。(一)地球形状与地球椭球(二)坐标系统(三)高程基准一 地理空间参考(一)地球形状与地球椭球自然地球表面自然地球表面自然地球表面是一个起伏不平,十分不规则的表面,最高点珠峰(8848.13米),最深处马里亚那海沟(-11034米。这个高低不平的表面无法用数学公式表达,也无法进行计算。那么如何准确表达地球上每一点的绝对位置呢?找出一个规则的曲面来代替地球的自然表面。假设,当海水处于完全静止的平衡状态时,存在着一个从海平面延伸到所有大陆下部、而与地球重力方向处处正交的一个连续、闭

2、合的水准面,这就是大地水准面大地水准面。大地水准面大地水准面 以大地水准面为基准,可以用水准仪完成地球自然表面上任一点高程的测量。地球椭球面地球椭球面 规则的数学曲面ab 基于大地水准面建立地球椭球体模型:2222221xyzaab 旋转椭球体是地球表面几何模型中最简单一类模型,为世界各国普遍采用作为测量工作的基准。我国目前一般采用克拉索夫斯基椭球体作为地球表面几何模型。主要参数:长轴、短轴、扁率国际主要的椭球参数国际主要的椭球参数 椭球名称椭球名称 年代年代 长半径长半径/m 扁率扁率 附附 注注德兰勃(Delambre)1800 6,375,653 1:334.0 法国埃弗瑞斯(Evere

3、st)1830 6,337,276 1:300.801 英国贝赛尔(Bessel)1841 6,377,397 1:299.152 德国克拉克(Clarke)1880 6,378,249 1:293.459 英国海福特(Hayford)1910 6,378,388 1:297.0 1942年国际第一个推荐值克拉索夫斯基 1940 6,378,245 1:298.3 苏联1967年大地坐标系 1967 6,378,160 1:298.247 1971年国际第二个推荐值1975年大地坐标系 1975 6,378,140 1:298.257 1975年国际第三个推荐值1980年大地坐标系 1979

4、6,378,137 1:298.257 1979年国际第四个推荐值地球表面地球表面椭球体椭球体海面海面大地水准面大地水准面 从从地球自然表面地球自然表面 大地水准面大地水准面 地球椭球面地球椭球面 大地基准面:大地基准面是利用特定椭球体对特定地区地球表面的逼近。因此每个国家或地区均有各自的大地基准面。椭球体与大地基准面之间的关系是一对多的关系椭球体与大地基准面之间的关系是一对多的关系一 地理空间参考(二)坐标系统坐标系统球面坐标系统平面坐标系统天文坐标系大地坐标系空间直角坐标系 表示地面点在大地水准面上的位置,它的基准面是大地水准面,它用天文经度和天文纬度两个参数来表示地面点在大地体上的位置。

5、球面坐标系统:球面坐标系统:天文坐标系天文坐标系K(,)大地测量中以参考椭球面为基准面建立起来的坐标系。地面点的位置用大地经度L、大地纬度B和大地高程来表示。球面坐标系统:球面坐标系统:大地坐标系P(L,B,H)LB大地坐标系 大地经、纬度是根据起始大地点(大地原点,该点的大地经纬度与天文经纬度一致)的大地坐标,按大地测量所得的数据推算而得的。由于天文坐标和大地坐标选用的基准线和基准面不同,所以同一点的天文坐标与大地坐标不一样,不过这种差异很小,在普通测量工作中可以忽略。陕西泾阳县永乐镇石际寺村大地原点 国家大地控制网大地坐标系 1954北京坐标系采用克拉索夫斯基椭球,实质上是由原苏联普尔科沃

6、为原点的1942年坐标系的延伸。1980西安坐标系采用1975国际椭球,以陕西省泾阳县永乐镇大地原点为起算点。参心空间直角坐标系的坐标原点位于参考椭球的中心,Z轴指向参考椭球的北极,X轴指向起始子午面与赤道的交点,Y轴位于赤道面上切按右手系于X轴呈90度夹角。球面坐标系统:球面坐标系统:空间直角坐标系(参心、地心)地心空间直角坐标系的坐标原点位于地球质心。WGS-84坐标系“World Geodetic System”(世界大地坐标系)是美国国防局为进行GPS导航定位于1984年建立的地心坐标系,1985年投入使用,采用WGS-84椭球。平面坐标系统平面坐标系统=球面坐标系统球面坐标系统+投影

7、规则投影规则一 地理空间参考(三)高程基准 1 绝对高程。绝对高程。地面点沿垂线方向至大地水准面的距离称为绝对高程或称海拔。高程基准是推算国家统一高程控制网的水准原点的起算依据,它包括一个水准基面和一个永久性水准原点。我国高程基准:1956年黄海高程系(水准原点高程为72.289m)1985年国家高程基准(国家水准原点高程为72.260m)水准原点1985国家高程基准,72.2604米黄海海面1952-1979年平均海水面为0米青岛市观象山上国家水准原点 国家高程控制网是确定地貌地物海拔高程的坐标系统,按控制等级和施测精度分为一、二、三、四等网。目前提供使用的1985国家高程系统共有水准点成果

8、114041个,水准路线长度为4166191公里。2006年5月,为更好地利用水准原点这一独特的资源,经国家测绘局批准,由专家精确移植水准原点信息数据,在青岛银海大世界内(也叫银海国际游艇俱乐部内)建起了“中华人民共和国水准零点”。这也是全国唯一的水准零点标志。2 相对高程相对高程。地面点沿铅垂线方向至任意假定的 水准面的距离称为该点的相对高程,亦称假定高程。3 高差高差。地面上任意两点的高程(绝对高程或相对 高程)之差称为高差。本章内容:一 地理空间参考二 空间数据投影三 空间坐标转换四 空间尺度二 空间数据投影解决如何把地球曲面信息展布到二维平面。(一)为何要进行投影?(二)地图投影变形(

9、三)地图投影的分类(四)常用地图投影概述(五)地图投影的选择地图投影地图投影Map ScaleMap distanceEarth distance=Curved EarthGeographic coordinates:B,L(Latitude&Longitude)Flat Map Cartesian coordinates:x,y(Easting&Northing)(xo,yo)XY二 空间数据投影 将地球椭球面上的点映射到平面上的方法,称为地图投影。1 球面坐标不方便进行距离、方位、面积等参数的量算;2 地图为平面,符合视觉心理,并易于进行距离、方位、面积等量算和各种空间分析。3 地球椭球体

10、为不可展曲面;(一)为何要进行投影?地图投影实质:建立地球椭球面上的点的地理坐标(B,L)与平面上对应点的平面坐标(x,y)之间的函数关系:12(,)(,)xf B LyfB L 二 空间数据投影(二)地图投影变形 将不可展的地球椭球面展开成平面,并且不能有断裂,则图形必将在某些地方被拉伸,某些地方被压缩,故投影变形是不可避免的。n长度变形n面积变形n角度变形 二 空间数据投影(三)地图投影的分类变形分类:等角投影:投影前后角度不变 等面积投影:投影前后面积不变;任意投影:角度、面积、长度均变形投影面:圆柱投影:投影面为圆柱 圆锥投影:投影面为圆锥 方位投影:投影面为平面投影面位置:正轴投影:

11、投影面中心轴与地轴相互重合 斜轴投影:投影面中心轴与地轴斜向相交 横轴投影:投影面中心轴与地轴相互垂直 相切投影:投影面与椭球体相切 相割投影:投影面与椭球体相割二 空间数据投影(四)常用地图投影概述1 高斯-克吕格投影2 通用墨卡托投影(UTM-Universal Transverse Mercator)3 兰勃特等角投影(Lambert conformal conic)1 高斯-克吕格投影-等角横轴切圆柱投影 高斯-克吕格尔投影是德国的 C.F.高斯于1822年提出的,后经德国的克吕格(J.H.L.Krger)于1912年加以扩充而完善。设想一个椭圆柱横切于地球椭球某一经线,根据等角条件,

12、用解析法将中央经线两侧一定经差范围内地球椭球体面上的经纬网投影到椭圆柱面上,并将此椭圆柱面展为平面所得到的一种等角投影。示意图如下:高斯-克吕格投影有以下特性:中央子午线是直线,其长度不变形,离开中央子午线的其他子午线是弧形,凹向中央子午线。离开中央子午线越远,变形越大。投影后赤道是一条直线,赤道与中央子午线保持正交。离开赤道的纬线是弧线,凸向赤道。所有经线和纬线正交。通常其按经差6或3分为六度带或三度带。六度带自本初子午线起每隔经差6自西向东分60带。三度带是在六度带的基础上分成的,自 1.5度子午线起每隔经差3度自西向东分120带。我国规定1:1万、1:2.5万、1:5万、1:10万、1:

13、25万、1:50万比例尺地形图均采用高斯投影。1:2.5至1:50万比例尺地形图采用经差6度分带,1:1万比例尺地形图采用经差3度分带。高斯平面直角坐标系坐标原点:赤道和中央子午线 的交点。x轴:中央子午线,北方向为正。y轴:赤道投影线,东方向为正。在计算中为避免Y值出现负值,我国规定各投影带内纵坐标轴西移500KM。YA=100 000mYB=-200 000m2 通用墨卡托投影(UTM-Universal Transverse Mercator)等角横轴割圆柱投影 圆柱割地球于南纬80度、北纬84度两条等高圈,投影后两条相割的经线上没有变形。该投影将地球划分为60个投影带,自180度经线向

14、东每带经差为6度,已被许多国家作为地形图的数学基础。高斯-克吕格投影的中央经线投影后保持长度不变,而UTM投影的比例系数为0.9996。3 兰勃特等角投影(Lambert conformal conic)正轴割圆锥投影 由德国数学家兰勃特在1772年拟定。设想用一个正圆锥割球面两标准纬线,应用等角条件将地图投影到圆锥面上,然后沿一母线展开,即为兰勃特投影平面。我国比例尺小于1:100万的地图通常采用兰勃特投影。二 空间数据投影(五)地图投影的选择地图投影的选择依据:1.制图区域的地理位置,形状和范围2.制图比例尺3.地图的内容1.制图区域的地理位置,形状和范围制图区域的地理位置,形状和范围地理

15、位置地理位置 形状形状 范围范围2.制图比例尺制图比例尺 3.地图的内容地图的内容 本章内容:一 地理空间参考二 空间数据投影三 空间坐标转换四 空间尺度 把空间数据从一种空间参考系映射到另一种空间参考系中。三 空间坐标转换三 空间坐标转换(一)空间直角坐标的转换(二)投影解析转换(三)数值拟合转换本章内容:一 地理空间参考二 空间数据投影三 空间坐标转换四 空间尺度五 地理格网四 空间尺度在多大的详尽程度研究空间信息。(一)观测尺度(二)比例尺(三)分辨率(四)操作尺度四 空间尺度(一)观测尺度指研究的区域大小或空间范围。四 空间尺度(二)比例尺 把地球表面多维的景物和现象描写在二维有限的平

16、面图纸上,必然遇到大与小的矛盾。解决的办法就是按一定数学法则,运用符号系统,经过制图概括,将有用信息缩小表示。制图区域较小时,比例尺指图上长度与地面之间的长度比例。制图区域较大时,比例尺指在进行地图投影时,对地球半径缩小的比率,通常称之为地图主比例尺。含义含义1 数字式2 文字式3 图解式4 无级比例尺表示方法表示方法四 空间尺度(三)分辨率 图像分辨率是成像细节分辨能力的一种度量,也是图像中目标细微程度的指标,它表示景物信息的详细程度。光谱分辨率(spectral resolution):对图像光谱细节的分辨能力。时间分辨率(temporal resolution):对同一目标的序列图像成像的时间间隔。空间分辨率(spatial resolution):图像目标的空间细节在图像中可分辨的最小尺寸。当需要区分两个具有细微波谱差异的目标物时,光谱分辨率指标比较重要。时间分辨率(temporal resolution)空间分辨率(spatial resolution)四 空间尺度(四)操作尺度 对空间实体、现象的数据进行处理操作时应采用的最佳尺度。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(第二章地理空间数学基础分解课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|