1、DICPDICP分子筛的分子筛的合成与制备合成与制备结构结构&组成组成催化催化性能性能Al(1Si)Al(1Si)Al(3Si)Al(4Si)Higher Si/AlStronger acidicsitesDICPDICPDICPDICPDICPDICPDICPDICPCrystalli-zation TimeStructureTypeAsym.StretchSym.StretchT-O BendingP-O-Al(P-O-P)O-P-OSi-OP-O(Al-O)D-6RingsPO4(Si,Al)O4SiO4RingsChannel0hGel12251090785730-6185705204
2、70365-0.5hGel-1070-730-618570-475365-1hCrystal12151100-730635570530480-3801.5hCrystal12151100-730635570530480-380DICPDICP02040608010001234AlPSiCrystallization Tim e(h)Relative Content ofSi,P,A l(%)02040608010001234Crystallization Tim e(h)Relative content of C(%)DICPDICPDICPDICPDICPDICPDICPDICPDICPDI
3、CP晶粒以晶粒以Si(4Al)方式方式生长生长(2.5h)初始凝初始凝胶胶(0h)重排重排 聚合聚合形成形成晶核晶核(0.5h)晶粒生长晶粒生长80%Si 直接进入骨架直接进入骨架Si(nAl)n=0-4 结构形成结构形成(26h)Si 取代取代P2Si 取代取代 Al+PSi 直接参与直接参与相对结晶度相对结晶度80%SAPO-34晶化机理模型晶化机理模型DICPDICPDICPDICPDICPDICPDICPDICPDICPDICPDICPDICPDICPDICPDICPDICPDICPDICPDICPDICPDICPDICPDICPDICPDICPDICPDICPDICPDICPDICP
4、DICPDICPDICPDICPH-MAS-NMR spectrum of HY zeoliteDICPDICPIR spectra of HY zeolite without and with adsorbed pyridine HY HY+Pyridine(sodalite)(supercage)(B)(Lewis)DICPDICPPyridine adsorption on different zeolites samplesP.A.Weyrich,W.F.Holderich,Appl.Catal.A 158(1997)145.+MethodAcid TypeAcid Location(
5、Int./Ext.)Acid AmountAcid StrengthMajor DrawbacksBrnstedLewisTitration +AccessibilityTPD(Bases adsorption)+Diffusion&Non-acidic adsorptionIR(hydroxyls)+Sample preparationIR(Bases adsorption)+Sample preparation1H NMR(hydroxyls)+Water adsorption31P NMR(TMP)+(B)(L)+(L)(B)Volatile,Oxidization&Toxicity31
6、 P NMR(Phosphine Oxides)+(B,L)+(B,L)Weaker basicityZhao et al.,J.Phys.Chem.B,106,4462(2002)HZSM-5/26*AlNFoct 0ppmAlFtet 56ppmHZSM-5/15*12080400-40HZSM-5/75*Chemical shift(ppm)Spinning Rate=5.0 kHzSpinning Rate=5.5 kHz1050-5Chemical shift(ppm)H-ZSM-5/75 H-ZSM-5/26H-ZSM-5(26)H-ZSM-5/15TMP(Trimethylpho
7、sphine)Size ca.0.55 nmTMPO(Trimethylphosphine Oxide)Size ca.0.55 nmTBPO(Tributylphosphine Oxide)Size ca.0.82 nm O P CH2 CH2 CH3 CH2 CH2 CH2 CH2 CH3 CH2 CH2 CH2 CH3 ZSM-5(10-MR)TMP Adsorptionthermal decomposition of trimethylphosphine silver iodidecomplex onto the dehydrated H-ZSM-5 at 473 KTMPO(TBPO
8、)AdsorptionH-ZSM-5dehydration723 K;24 hadd TMPO/TBPO dissolved in CH2Cl2under N2 gloveboxLoadedSampleCH2Cl2 evacuationvesselagitated at RT;12 h323 Kunder N2 gloveboxpacking into MAS rotor31P MASNMROSiAlHPCH3CH3CH3+-OSiAlHOPCH3CH3CH3 TMP/Brnsted acid siteTMPO/Brnsted acid site Ionic Pair Complex Hydr
9、ogen Bonded ComplexLunsford et al.,J.Am.Chem.Soc.,107,1540(1985)Mueller et al.,J.Phys.Chem.B,102,2890(1998)Higher Acidic Strength O-H Bond Strength 31P Chemical Shift (downfield)Formation ofTMPH+complexAssignments-4 ppm:TMPH+/Brnsted acid sites-50 ppm:TMP/Lewis acid sites-62 ppm:Physisorbed TMPNOTE:
10、Acid sites with differentstrengths cannot bedifferentiated!CP/MAS Decoupling5 00-5 0-1 0 0 oo*C h e m i c a l s h i f t (p p m)*Without decouplingSpinning Rate=7 kHzL B Lunsford et al.,JACS,107,1540(1985)1501209060300Chemical shift(ppm)HZSM-5/15HZSM-5/26HZSM-5/75HZSM-5/15(Partially hydrated)*MobileT
11、MPO Upto five 31P resonance were observed 86,75,67,63 and 53 ppm for TMPO/Brnsted Increasing Si/Al Acidic Strength No Lewis acid sites observed The newly observed 30 ppm peak can be ascribed due to mobile TMPO TMPO can probes both internal and external acid sitesSpinning Rate=10 kHz(a)TMPO(b)TBPO*15
12、0100500-50Chemical shift(ppm)646948(P)58(P)7074Spinning Rate=10 kHzZhao et al.,J.Phys.Chem.B,106,4462(2002)Adsorption of TMPO and TBPO on Al-MCM-41(Si/Al=70;pore size=2.54 nm)Mueller et al.,J.Phys.Chem.B,102,2890(1998)Mechanism of Acid Site Formation in Al-MCM-41?*1 2 06 00-6 0-1 2 04 7 p p m*C h e
13、m ic a l s h if t (p p m)4 k H z7 k H z1 0 k H zS p in n in g R a t e(1)refer to chemical shift difference w.r.t.crystalline TMPO(39 ppm)or TBPO(47 ppm).(2)Data in parentheses denote(Int.,Ext.)acid concentrations in (0.05)mmol/g cat.(3)Assume 1:1 relation between adsorbate and Brnsted acid site.ICP
14、probides concentrations of Al,Si and P.46-4936-3830-3226-2824-2622-2421-2219-2014-1811-12 H-ZSM-5(15)86.075.067.063.053.043.030.0 H-MCM-22(13)85.076.670.967.463.960.9(L)55.050.043.031.7 H-MOR(10)87.776.769.664.055.343.033.6 H-USY(14)70.266.562.5(L)58.655.751.343.0 H-Beta(12)69.565.460.9(L)56.345.0 H
15、-MCM-41(16)69.064.055.0(L)43.0Sulfated Zirconia70.065.060.055.0(L)38.045-4739-4033-3427-2924-2622-2421-2218-1915-1812-13 H-ZSM-5(15)92.075.071.0 H-MCM-22(13)92.086.580.775.972.668.7(L)65.054.050.0 H-MOR(10)93.070.2(L)63.051.042.0 H-USY(14)80.974.570.0(L)65.462.559.256.050.744.0 H-Beta(12)93.080.575.
16、071.3(L)57.050.042.0 H-MCM-41(16)74.070.058.0Sulfated ZirconiaSample(Si/Al)TMPOPhysisorbedTBPOPhysisorbedSample(Si/Al)46-4936-3830-3226-2824-2622-2421-2219-2014-1811-12Amount Acid/Al H-ZSM-5(15)0.5%(0.005)22.4%(0.165)37.5%(0.275)36.6%(0.269)11.3%(0.09)3.0%(0.021)69.0%H-MCM-22(13)4.3%(0.012)6.1%(0.01
17、7)17.2%(0.048)39.4%(0.110)7.9%(0.022)14.0%L(0.039)7.2%(0.020)3.9%(0.011)22.5%H-MOR(10)2.2%(0.023)11.1%(0.118)57.5%(0.610)21.5(0.228)7.7%(0.082)70.1%H-USY(14)1.6%(0.013)6.6%(0.052)48.4%L(0.383)11.7%(0.092)21.4%(0.170)10.3%(0.082)68.3%H-Beta(12)8.7%(0.080)27.9%(0.257)39.4%L(0.362)24.0%(0.221)69.3%H-MC
18、M-41(16)34.4%(0.157)55.3%(0.252)10.3%L(0.047)45.7%SulfatedZirconia2.3%(0.012)12.9%(0.066)37.6%(0.193)47.2%L(0.242)-45-4739-4033-3427-2924-2622-2421-2218-1915-1812-13Amount Acid/Al H-ZSM-5(15)10.5%(0.004)35.0%(0.012)54.5%(0.018)H-MCM-22(13)11.5%(0.007)3.3%(0.002)6.6%(0.004)42.6%(0.026)18.0%(0.011)16.
19、4%L(0.01)1.6%(0.001)4.8%H-MOR(10)17.0%(0.009)56.6%L(0.03)26.4%(0.014)3.4%H-USY(14)9.1%(0.08)26.0%(0.23)58.0%L(0.51)2.3%(0.02)2.3%(0.02)2.3%(0.02)76.5%H-Beta(12)13.3%(0.04)46.7%(0.14)20.0%(0.06)20.0%L(0.06)23.2%TMPOTBPOSample(Si/Al)Sample(Si/Al)DICPDICPDICPDICPDICPDICPDICPDICPDICPDICPDICPDICPRR123456
20、78BackgroundPEN PBN 塑料液晶中间体-中法PICS项目DICPDICPT-butylation of Naphthalene with t-butanolReaction Results0102030405060708090100HY(20)HY(6)HY(2.5)H-Beta(25)H-Beta(12)Conv.2-TBNDTBNOthersreaction time=2hs083.814.197.95.901020304050607080901002,6-2,7-2,6-+2,7-2,6-/2,7-No 1-TBNDICPDICPDICPDICPOHOCH3OH+CH3C
21、H3+RCOOHCH3CORDICPDICPOH+H2O2Cat:TS-1,.O2OH+H2OOHO+H2DICPDICPDICPDICPnA:(detergents,desiccation and separation);nFAU:X(desiccation,purification,separation)and Y(separation,catalysis);nMOR:(adsorption and catalysis);nLTL:KL-type zeolite(catalysis:aromatization);nMFI:Silicalite and ZSM-5(adsorption an
22、d catalysis);nBEA:Beta-type zeolite(catalysis:cumene);nMTW:zeolite MCM-22(catalysis:ethylbenzene,probably cumene?);nCHA:SAPO-34(methanol to olefins or MTO process-demonstration unit);nFER:Ferrierite(skeletal isomerization of n-butenes-demonstration unit);nAEL and/or TON:SAPO-11 and possibly ZSM-22(i
23、mprovement of pour point for petroleum cuts by straight long paraffin isomerization);nStructures not revealed(for aromatic C8 isomerization):one is certain(IFP)and the second is possible(UOP).DICPDICPMobil researchers in 1992,cationic surfactant pore size 1.5-10nm,high surface areas 1200 m2/glow hyd
24、rthermal stability,basic conditionHexagonal(p6m)Liquid crystal template routesCubic Ia3dlamellarMCM-41MCM-48MCM-50DICPDICP介孔材料的形成机理介孔材料的形成机理1.层状机理:层状机理:1993年年G.D.Stucky1996年日本年日本Inagaki:pH decreasingThe mechanism for formation of FSM-16 2.棒状机理:棒状机理:1994年年M.E.DavisA.Monnier etal.Science,261,1299(1993
25、)C.Chen,etal.Microporous Mater.,4,1(1995)S.B.Inagaki,CHEM SOC JPN 69,1449(1996)DICPDICP介孔材料的形成机理介孔材料的形成机理Cooperative Assembly Approach:Q.Huo etal.Nature,368,317(1994).DICPDICPmicroporous zeolitesMCM-41pore size 1.1 nmpore size 2-6 nmApplications:catalysis,separation,adsorption,sensor,nanodevice and
26、fabrication of nanostructured materials advantage in the mass diffusion and transport because of their interconnecting networks Bicontinuous helix 3D cubic mesostructure Ia3d,MCM-48J.Thomas,O.Terasaki et al.,Acc.Chem.Res.2001,34,583-594DICPDICPlow temperature synthesis,-5C,acid synthesis,large head
27、group surfactant,C16H33N(Et)3Brwell defined morphologyan epitaxial phase transformationO.Terasaki,T.Tatsumi,JACS,2002,123,12089Q.Huo etal.Nature,368,317(1994).DICPDICP 3D caged structure,cubic Im3m triblock copolymer with long EO chains F127,EO106PO70EO106,F108,F98,Brij 700,acid synthesis,highly ord
28、eredXRD patternsN2 sorption isothermsD.Zhao,et al.J.Am.Chem.Soc.1998,120,60248.0 nmLarge Pore Cubic Caged SBA-16O.Terasaki,D.Zhao et al.Nature 408,449(2000)100110111Cell parametera=13.3 nmWindow size 2.3 nmCavity surfaceSphere diameter d=9.5 nm 012345a420310211200110Intensity2 Theta valueXRD pattern
29、sStructure modelDICPDICPMesoporous Silica MCM-48 and Carbons CMK-4R.Ryoo et al.,J.Phys.Chem.B,103,7743,1999.S.Jun,S.H.Joo,R.Ryoo,et al.,J.Am.Chem.Soc.,122(43);10712-10713,2000.S.Joo,R.Ryoo et al.,Microporous Mesoporous Mater.,44-45,153-158,2001.DICPDICPD.Zhao,Science,1998,279,548TEM imagesoblock cop
30、olymer templatingacidic synthesis conditionlarge pore size(4.6 40 nm)thermally and hydrothermally stable highly orderedthick silica wall,microporous walls high surface areas(1000 m2/g)pore volume(1.02.5 cm3/g)N2 sorption isothermsXRD patternsD.Zhao,et al.J.Am.Chem.Soc.1998,120,6024S.-H.Joo,R.Ryoo,M.
31、Jaroniec,J.Phys.Chem.B 2002,106,4640N2 sorption isothermsinitial parts of plotsSynthesis of Mesoporous Materials Surfactant +Inorganic source hydrothermalSynthetic Characters for Mesoporous Materials:1.low temperature,-5CRT,150 C2.fast formation rate 1 position is variable,tetrahedron,octahedron4.no
32、n-aqueous synthesis,surfactant templating5.morphology control Structure characters:1.non-perfect crystal,long range order(no code)2.amorphous inorganic walls3.weck interaction(H-bonding,ligand,van der Waals)4.hydrothermally unstablepH,media mesoporous materialsSynthesis Routes to Mesoporous Material
33、sQ.Huo etal.Nature,368,317(1994).S.A.Bagshaw,etal.Science,269,1242(1995)J.Y.Ying,ANGEW CHEM INT EDIT 38,56(1999)D.Zhao,Science,1998,279,548MCM-41(p6m),MCM-48(Ia3d),MCM-50(L),SBA-6(Pm3n),SBA-8(cmm),FUD-2(Fd3m)f,I+XH+S S=nonionic surfactant,block copolymersNon-silica oxide mesostructures,e.g.W,Mo SBA-
34、3(p6m),SBA-1(pm3n),SBA-2(P63/mmc),MHS,MUX,worm-like dirordered mesopore Hexagonal,cubic mesostructures,Nb,Ta SBA-15(p6m),SBA-16(Im3m),SBA-12(P63/mmc),SBA-11(Pm3m),FDU-1(Im3m),FDU-4,5 SBA-13,14DICPDICPDICPDICPDICPDICPAvelino Corma,Maria J.Diaz-Cabanas,Joaquin Martinez-Triguero,Fernando Rey&Jordi Rius
35、,A large-cavity zeolite with wide pore indows and potential as an oil refining catalyst,Nature,514-517(418),2002DICPDICPDICPDICPDICPDICPDICPDICPZhixin Ma,Takashi Kyotani*and Akira Tomita,Preparation of a high surface area microporous carbon having the structural regularity of Y zeolite,Chem.Commun.,
36、2000,23652366DICPDICPDICPDICPStructural models of mesoporous benzenesilica.A,B,Images of the layered arrangement of SiO1.5C6H4SiO1.5 units in the walls.The structure was optimized by minimizing the three-dimensional periodic lattice using the force field COMPASS.C,D,Images of the hexagonal lattice constructed with the layered pore-wall structure.The structure was also minimized by using the force field COMPASS.Atoms are represented as a stick model.Silicon,orange;oxygen,red;carbon,white;hydrogen,yellow.DICPDICPDICPDICP