物理化学热力学第一定律课件.ppt

上传人(卖家):晟晟文业 文档编号:4620607 上传时间:2022-12-26 格式:PPT 页数:101 大小:15.34MB
下载 相关 举报
物理化学热力学第一定律课件.ppt_第1页
第1页 / 共101页
物理化学热力学第一定律课件.ppt_第2页
第2页 / 共101页
物理化学热力学第一定律课件.ppt_第3页
第3页 / 共101页
物理化学热力学第一定律课件.ppt_第4页
第4页 / 共101页
物理化学热力学第一定律课件.ppt_第5页
第5页 / 共101页
点击查看更多>>
资源描述

1、物理化学热力学第一定律第二章第二章热力学第一定律热力学第一定律热力学是自然科学中建立最早的学科之一热力学是自然科学中建立最早的学科之一 1.1.第一定律:能量守恒,解决过程的能量衡算第一定律:能量守恒,解决过程的能量衡算 问题(功、热、热力学能等)问题(功、热、热力学能等)2.2.第二定律:过程进行的方向判据第二定律:过程进行的方向判据3.3.第三定律:解决物质熵的计算第三定律:解决物质熵的计算 热力学基本定律是生产经验和科学实验的总结,它们热力学基本定律是生产经验和科学实验的总结,它们不能用其它理论方法加以证明,但其正确性毋庸置疑。不能用其它理论方法加以证明,但其正确性毋庸置疑。需要指出:需

2、要指出:(1 1)经典热力学研究含有大量质点的宏观系统:其原理、)经典热力学研究含有大量质点的宏观系统:其原理、结论不能用于描述单个的微观粒子;结论不能用于描述单个的微观粒子;(2 2)经典热力学只考虑平衡问题:只考虑系统由始态到末)经典热力学只考虑平衡问题:只考虑系统由始态到末态的净结果,并依此解决诸如过程能量衡算、过程的方向、态的净结果,并依此解决诸如过程能量衡算、过程的方向、限度的判断等热力学问题,至于由始态到末态的过程是如限度的判断等热力学问题,至于由始态到末态的过程是如何发生与进行的、沿什么途径、变化的快慢等等一些问题,何发生与进行的、沿什么途径、变化的快慢等等一些问题,经典热力学往

3、往不予考虑。经典热力学往往不予考虑。2.1 2.1 基本概念和术语基本概念和术语1.1.系统与环境系统与环境2.2.状态与状态函数状态与状态函数 过程与途径过程与途径功和热功和热 5.5.热力学能热力学能 1.1.系统与环境系统与环境系统系统:作为研究对象的那部分物质:作为研究对象的那部分物质 环境环境:系统以外与之相联系的那部分物质:系统以外与之相联系的那部分物质 系统与环境系统与环境的相互作用的相互作用物质交换物质交换能量交换能量交换传热传热作功作功体积功体积功非体积功非体积功三类系统:三类系统:隔离系统隔离系统(isolated system):与环境间与环境间无物质交换,无能量交换;无

4、物质交换,无能量交换;封闭系统封闭系统(closed system):与环境间与环境间无物质交换,有能量交换;无物质交换,有能量交换;敞开系统敞开系统(open system):与环境间与环境间有物质交换,有能量交换;有物质交换,有能量交换;2.2.状态与状态函数状态与状态函数(1 1)状态与状态函数)状态与状态函数 系统的性质系统的性质:决定系统状态的物理量:决定系统状态的物理量(如如p p,V V,T T,C Cp,p,mm)系统的状态系统的状态:热力学用系统所有的性质来描述它所处:热力学用系统所有的性质来描述它所处的状态,当系统所有性质都有确定值时,则系统处于一定的状态,当系统所有性质都

5、有确定值时,则系统处于一定的状态的状态 状态函数状态函数:系统处于平衡态时的热力学性质(如:系统处于平衡态时的热力学性质(如U U、H H、p p、V V、T T 等)是系统状态的单质函数,故称为状态函等)是系统状态的单质函数,故称为状态函数。数。状态函数特点状态函数特点:l 状态改变,状态函数值至少有一个改变状态改变,状态函数值至少有一个改变l 异途同归,值变相等,周而复始,其值不变异途同归,值变相等,周而复始,其值不变l 定量,组成不变的均相流体系统,定量,组成不变的均相流体系统,任一状态函数是是另任一状态函数是是另外两个状态函数的函数,如外两个状态函数的函数,如V=f(T,p)l 状态函

6、数具有全微分特性:状态函数具有全微分特性:d d0 0 x x=(2)状态函数的分类状态函数的分类广度量和强度量广度量和强度量 注意:由注意:由任何两种广度性质之比得出的物理量则为强度任何两种广度性质之比得出的物理量则为强度量,如摩尔体积量,如摩尔体积 等等强度量强度量:没有加和性(如:没有加和性(如p、)广度量广度量:具有加和性(如:具有加和性(如、m、)状态函数状态函数按状态函数的数值是否与物质的数量有关,将其分为广按状态函数的数值是否与物质的数量有关,将其分为广度量(或称广度性质)和强度量(或称强度性质)。度量(或称广度性质)和强度量(或称强度性质)。(3)平衡态平衡态当系统与环境间的联

7、系被隔绝后,系统的热力学性质当系统与环境间的联系被隔绝后,系统的热力学性质不随时间而变化,就称系统处于不随时间而变化,就称系统处于热力学平衡态热力学平衡态。热力学研究的对象就是处于平衡态的系统。热力学研究的对象就是处于平衡态的系统。系统处于平衡态应满足:系统处于平衡态应满足:1)热平衡热平衡 heat equilibrium:系统各部分系统各部分T相同相同;2)力平衡力平衡 force equilibrium:系统各部分系统各部分p相同相同;3)相平衡相平衡 phase equilibrium:物质在各相分布物质在各相分布 不随时不随时 间变化间变化;4)化学平衡化学平衡chemical eq

8、uilibrium:系统组成不随时间变化系统组成不随时间变化.物理化学中主要讨论三种过程物理化学中主要讨论三种过程:单纯单纯pVTpVT变化变化相变过程,相变过程,如气化,凝固,晶型转变如气化,凝固,晶型转变化学变化过程化学变化过程g g 当系统从一个状态变化至另一状态时,系统即进行了一个当系统从一个状态变化至另一状态时,系统即进行了一个过程。过程。系统可以从同一始态出发,经不同的途径变化至同一末态系统可以从同一始态出发,经不同的途径变化至同一末态 3.3.过程与途径过程与途径1)1)恒温过程:恒温过程:变化过程中变化过程中(系系)=T T(环环)=定值定值(d(dT T=0)=0)(始始)=

9、T T(终终),为等温过程,为等温过程)()(T T=0)=0)根据过程进行的特定条件根据过程进行的特定条件 ,有:,有:2)2)恒压过程:恒压过程:变化过程中变化过程中p p(系系)=p p(环环)=定值定值(d(dp p=0)=0)(始始)=(终终),为等压过程,为等压过程 )()(p p=0)=0)3)3)恒容过程:恒容过程:过程中系统的体积始终保持不变,体积功过程中系统的体积始终保持不变,体积功W W=0=04)4)绝热过程:绝热过程:系统与环境间无热交换的过程,过程热系统与环境间无热交换的过程,过程热Q Q0 05)5)循环过程:循环过程:经历一系列变化后又回到始态的过程。经历一系列

10、变化后又回到始态的过程。循环过程前后所有状态函数变化量均为零循环过程前后所有状态函数变化量均为零 。4.4.功和热功和热功和热功和热都是能量传递过程中表现出来的形式都是能量传递过程中表现出来的形式 不是能量存在的形式不是能量存在的形式 1)1)功功 功用功用 符号表示。符号表示。符号规定:系统得到环境所作的功时符号规定:系统得到环境所作的功时 系统对环境作功时系统对环境作功时WW0 0WW 0 0WW 0 0Q Q 热是途径函数热是途径函数 U U是系统内部所储存的是系统内部所储存的各种各种能量能量的总和的总和 分子平动能、转动能分子平动能、转动能 包括包括 分子间相互作用的势能分子间相互作用

11、的势能 分子内部分子内部各原子间的振动各原子间的振动、电子及核电子及核运动运动5.5.热力学能热力学能U U 热力学系统由大量运动着微观粒子热力学系统由大量运动着微观粒子(分子、原子和分子、原子和离子等)所组成,离子等)所组成,系统的热力学能是指系统内部所有粒系统的热力学能是指系统内部所有粒子全部能量的总和子全部能量的总和 U U 是状态函数是状态函数 对指定系统,若对指定系统,若n n一定,有一定,有 U U 是广度量是广度量,具有加和性具有加和性(,)U Uf f T T V V=()()d dd dd dV VT TU UU UU UT TV VT TV V=+U U 的绝对值无法求,但

12、的绝对值无法求,但 U U可求可求 U U只取决于始末态的状态,与途径无关只取决于始末态的状态,与途径无关不同途径,不同途径,WW、Q Q 不同不同但但 U U U U1 1 U U2 2 U U3 3 例:例:始态始态 末态末态1 13 32 2热力学第一定律的本质是能量守恒原理,即隔离系统无论热力学第一定律的本质是能量守恒原理,即隔离系统无论经历何种变化,其能量守恒经历何种变化,其能量守恒2.2 2.2 热力学第一定律热力学第一定律1.1.热力学第一定律热力学第一定律 热力学第一定律的其它说法:热力学第一定律的其它说法:不消耗能量而能不断对外作功的机器不消耗能量而能不断对外作功的机器第一类

13、永动机是第一类永动机是不可能的不可能的。若系统发生微小变化,有:若系统发生微小变化,有:2.2.封闭系统热力学第一定律的数学形式封闭系统热力学第一定律的数学形式 系统热力学能(内能)的增量;系统热力学能(内能)的增量;Q 系统与环境交换的热,得热为,失热为系统与环境交换的热,得热为,失热为 W 系统与环境交换的功,得功为,失功为系统与环境交换的功,得功为,失功为U UQ QWWDD=+d dUQWUQW=+=+3.3.焦耳实验焦耳实验焦耳于焦耳于18431843年进行了低压气体的自由膨胀实验:年进行了低压气体的自由膨胀实验:实验中发现水温维持不变实验中发现水温维持不变 理想气体向真空膨胀:理想

14、气体向真空膨胀:W W 0 0;过程中水温未变:过程中水温未变:Q Q 0 0 U U 0 0()d dd dd dTVUf T,VUUUVTVT (任何气体)(任何气体)又又 dT=0,dU=0,dV 00TUV 恒温时,恒温时,U U 不随不随V V 或或 p p 变化变化 U U=f f(T T)理想气体的理想气体的U U只是只是T T 的函数的函数(液体、固体近似成立)(液体、固体近似成立)(理想气体)(理想气体)这一由实验得出的结果也可以用理想气体模型解释:这一由实验得出的结果也可以用理想气体模型解释:理想气体分子间没有相互作用力,因而不存在分子间理想气体分子间没有相互作用力,因而不

15、存在分子间相互作用的势能,其热力学能只是分子的平动、转动相互作用的势能,其热力学能只是分子的平动、转动、分子内部各原子间的振动、电子的运动、核的运动、分子内部各原子间的振动、电子的运动、核的运动的能量等,而这些能量均只取决于温度。的能量等,而这些能量均只取决于温度。2.3 2.3 恒容热、恒压热及焓恒容热、恒压热及焓对于封闭系统,对于封闭系统,WW =0=0 时的恒容过程:时的恒容过程:d dV V=0=0,W W=0=0d dVVQUQU 1.1.恒容热(恒容热(Q QV V):):恒容热恒容热与过程的热力学能变与过程的热力学能变在量值上相等在量值上相等 对于封闭系统,对于封闭系统,WW =

16、0=0 时的恒压过程:时的恒压过程:2.2.恒压热(恒压热(Q Qp p)及焓:)及焓:由热力学第一定律可得由热力学第一定律可得:()()a ammb b2 21 12 21 11 11 12 22 2WWp pV VV Vp p V VV Vp pV Vp pV V=-=-=-()()2 22 22 21 11 11 1 =p pQ QU UWWU Up p V VU Up pV V=DD-+-+恒压过程:系统的压力与环境的压力相等且恒定不变恒压过程:系统的压力与环境的压力相等且恒定不变常数a ammb bp pp p=H H为焓,为状态函数,广延量,为焓,为状态函数,广延量,单位单位 J

17、J注:注:H H 的计算的计算的的基本公式:基本公式:H=H=U+U+(pVpV)恒压过程恒压过程 H H=Q Q 非恒压过程非恒压过程 H H Q QdefdefHUpVHUpV=+=+定义定义 :p pQ QH H=DD即恒压热即恒压热与过程的焓能变与过程的焓能变在量值上相等在量值上相等 d dp pQ QH H=理想气体,单纯理想气体,单纯 pVT pVT 变化,恒温时:变化,恒温时:U U=0 0 H H=U U+(pVpV)=0+)=0+(pVpV)=(nRTnRT)=)=nR nR T T=0=0H H=f f(T T)理想气体单纯理想气体单纯 pVT pVT 变化时,变化时,H

18、H 只是只是 T T 的函数的函数(液体、固体近似成立)(液体、固体近似成立)3.3.Q QV V=U U 及及 Q Qp p=H H 的意义的意义QVQp可测量可测量 U H状态函数状态函数 量热实验量热实验状态函数状态函数法计算法计算盖斯定律:盖斯定律:在恒容或恒压过程中,化学反应的热仅与在恒容或恒压过程中,化学反应的热仅与始末状态有关而与具体途径无关。始末状态有关而与具体途径无关。2.4 2.4 摩尔热容摩尔热容热热显热(显热(pVTpVT变化中的热变化中的热)潜热(相变热)潜热(相变热)反应热反应热(焓焓)摩尔热容摩尔热容相变焓相变焓标准摩尔生成焓和燃烧焓标准摩尔生成焓和燃烧焓主要介绍

19、摩尔定容热容和摩尔定压热容主要介绍摩尔定容热容和摩尔定压热容 1.摩尔定容热容摩尔定容热容(1)定义定义 在某温度在某温度T T 时,物质的量为时,物质的量为n n 的物质在恒容且非的物质在恒容且非体积功为零的条件下,若温度升高无限小量体积功为零的条件下,若温度升高无限小量d dT T 所需所需要的热量为要的热量为 Q Q,则就定义,则就定义 为该物质在该温度为该物质在该温度下的摩尔定容热容,以下的摩尔定容热容,以 表示,表示,1 1d dV VQ Qn nT T,m,mV VC C,mm1 1d dV VV VQ QC Cn nT T=mmd dd d,V VV VV VQ QU Un n

20、U U=()()mm,mm1 1V VV VV VU UU UC Cn nT TT T=对恒容过程对恒容过程 代入有代入有 定义式定义式,m,mV VC C单位:单位:1111J molKJ molK-(2)(2)应用应用计算单纯计算单纯pVT pVT 过程的过程的DDU U 2 21 1,m,md dT TVVVVT TQUnCTQUnCT=D=D=恒容过程:恒容过程:(理想气体(理想气体)2 21 1,m,md dT TV VT TUnCTUnCTD=D=但但 Q QU U DD非恒容过程:非恒容过程:理想气体理想气体 的必然结果的必然结果()U Uf f T T=2.2.摩尔定压热容摩尔

21、定压热容(1)(1)定义定义 在某温度在某温度T T 时,物质的量为时,物质的量为n n 的物质在恒压且非的物质在恒压且非体积功为零的条件下,若温度升高无限小量体积功为零的条件下,若温度升高无限小量d dT T 所需所需要的热量为要的热量为 Q Q,则就定义,则就定义 为该物质在该温度为该物质在该温度下的摩尔定压热容,以下的摩尔定压热容,以 表示,表示,1 1d dp pQ QnTnT,mmp pC C,mm1 1d dp pp pQ QC Cn nT T=对恒压过程对恒压过程 代入有代入有 定义式定义式,mmp pC C单位:单位:1111J molKJ molK-m,m,ddddppppp

22、pQHn HQHn H=()()mm,mm1 1p pp pp pH HH HC Cn nT TT T=(2)(2)应用应用计算单纯计算单纯pVT pVT 过程过程DDH H 恒压过程:恒压过程:Q QH H DD2 21 1,m,md dT TppppT TQHnCTQHnCT=D=D=非恒压过程:非恒压过程:2 21 1,mmd dT Tp pT TH Hn nC CT TDD=理想气体理想气体 的必然结果的必然结果()Hf THf T=理想气体:理想气体:凝聚态物质:凝聚态物质:2 21 1,mmd dT Tp pT TH Hn nC CT TDD=凝聚态物质忽略凝聚态物质忽略p p 影

23、响的结果影响的结果 2 21 1,m,md dT Tp pT TUHnCTUHnCTD D=D D=例例1.1.容积为容积为0.1m0.1m3 3的恒容容器中有的恒容容器中有4 mol Ar(g)4 mol Ar(g)及及2 mol 2 mol Cu(s)Cu(s),始态温度为,始态温度为0 0。现将系统加热至。现将系统加热至100 100,求过,求过程的程的Q Q、WW、DDU U及及DDH H。已知已知Ar(g)Ar(g)及及 Cu(s)Cu(s)的、的、C Cp p,m,m分别为分别为 和和 ,并假设其不随温度变化,并假设其不随温度变化 JmolK1 11 12 20 0.7 78 86

24、 6-解:解:Ar(g)Ar(g)可看作理想气体可看作理想气体 JmolK1 11 12 24 4.4 43 35 5-mm J Kmol1111,12.47212.472VpVpCCRCCR-=-=-=Ar,gCu,s()()U UU UU UDD=DD+DD()mAr,gAr,gAr,g,2 21 1()()()V VU Un nC CT TT TDD=-()mCu,sCu,sCu,sCu,s,21,21()()()()()()()()p pUHnCTTUHnCTTD D=-D D=-()()()mmAr,gAr,gCu,sCu,s J J,21,21()()()()()()()()412

25、.472224.435373.15273.15412.472224.435373.15273.1598769876VpVpUnCnCTTUnCnCTTD=+-D=+-=-=-=()()()mmAr,gAr,gCu,sCu,s J kJ,21,21()()()()()()()()420.786224.435373.15273.15420.786224.435373.15273.1513.20113.201ppppHnCnCTTHnCnCTTD=+-D=+-=-=-=kJ9 9.8 87 75 5V VQ QU U=DD=又因过程恒容,故又因过程恒容,故0 0WW=3 3.和和 的关系的关系,m,

26、mp pC C,m,mV VC C()()()()()()()mmmm,m,m,m,mmmmmmmmmmmmm pVpVpVpVpVpVppVppVHUHUCCCCTTTTUpVUUpVUTTTTUVUUVUp pTTTTTT-=-=-+=-=-=+-=+-()mmmmmmmmmmd dd dd dV VT TU UU UU UT TV VT TV V=+由()mmmm,U Uf f T T V V=()()()mmmmmmmmmmp pV Vp pT TU UU UU UV VT TT TV VT T=+代入上式有:代入上式有:()mmmm,m,m,m,mmmpVpVp pT TUVUVCC

27、pCCpVTVT-=+-=+3522m mm mV,p,CR,CR 5722m mm mV,p,CR,CR 单原子分子单原子分子双原子分子双原子分子0mmmmmmmm()()()()Tpp,V,UVR,CCRVTp理想气体:理想气体:(见第九章)见第九章)4 4.和和 随随T T 的关系的关系,m,mp pC C,m,mV VC C三种表示方法:三种表示方法:(1 1)数据列表:)数据列表:,m,mp pCTCT-(2 2)曲线:直观曲线:直观 (3)函数关系式:便于积分、应用函数关系式:便于积分、应用2 2,m,mp pCabTcTCabTcT=+=+2 23 3,mmp pC Ca ab

28、bT Tc cT Td dT T=+5.5.平均摩尔热容平均摩尔热容的定义:的定义:,mmp pC C()()2 21 1,m,m,m,m21212121d dT Tp pT Tp pp pCTCTQ QC Cn TTTTn TTTT=-恒压热的计算公式恒压热的计算公式:即单位物质的量的物质在恒压且非体积功即单位物质的量的物质在恒压且非体积功为零的条件下,在为零的条件下,在T T1 1T T2 2温度范围内,温度温度范围内,温度平均升高单位温度所需要的热量平均升高单位温度所需要的热量(),mm2 21 1p pp pQ Qn nC CT TT T=-2.5 2.5 相变焓相变焓相变:相变:物质

29、不同相态之间的转变,如蒸发、升华、熔化物质不同相态之间的转变,如蒸发、升华、熔化 和晶型转变等。和晶型转变等。相:相:系统中性质完全相同的均匀部分系统中性质完全相同的均匀部分 单位物质的量的物质在恒定温度及该温度平衡压力下发生单位物质的量的物质在恒定温度及该温度平衡压力下发生相变时对应的焓变,记作相变时对应的焓变,记作 ,单位:单位:1.1.摩尔相变焓摩尔相变焓 mmH HDDmmHnHHnHD=DD=D1 1kJ molkJ mol-说明:说明:(1 1)(3 3)(2 2)mm,mmp pH HQ QDD=(恒压且无非体积功)(恒压且无非体积功)()mmHf THf TD=D=(常压下数据

30、可查得)(常压下数据可查得)mmmmH HH HDD=-DD物质的量为物质的量为n n:2.2.摩尔相变焓随温度的变化摩尔相变焓随温度的变化已知:已知:()mm0 0H HT TDD待求:待求:()mmHTHTDDB()B()B()B()p T p T00 pT00 pT mHTm0HT mH mH()()()()mmmmmm0 0mmH HT TH HH HT TH HDD=DD+DD+DD()()()0 00 0m,mm,m,m,md d d dT Tp pT TT Tp pT THCTHCTCTCTD=D=-=-()()0 0mm,mmd dT Tp pT TH HC CT TDD=()

31、()0 0mm0,mmm0,md dT Tp pT THTHTCTHTHTCTD=D+DD=D+D()(),mm,mm,mmp pp pp pC CC CC CDD=-其中其中()1 1v va ap pmm1 10 00 0 C C4 40 0.6 64 4 k kJ Jmmo ol lH H-DD=()3 36 62 21 11 1,mmg g,2 29 9.1 16 61 14 4.4 49 91 10 0(/K K)2 2.0 02 22 21 10 0(/K K)J J K Kmmo ol lp pC CT TT TT T-=+()1 11 1,mml l7 76 6.5 56 6

32、J JK Kmmo ol lp pC C-=()v va ap pmm1 14 42 2.9 9 C CH HDD 1 13 38 8.4 43 3 k kJ J mmo ol l-例:已知例:已知 100100 C C、101.325 kPa101.325 kPa下下,H,H2 2O(l)O(l)的摩尔蒸发焓的摩尔蒸发焓水的平均摩尔热容水的平均摩尔热容实验测定值为实验测定值为100100 C C至至142.9142.9 C C之间水蒸气的摩尔定压热容:之间水蒸气的摩尔定压热容:试求试求H H2 2O(l)O(l)在在142.9142.9 C C平衡条件下的蒸发焓平衡条件下的蒸发焓解:假设水蒸

33、气为理想气体,并忽略水的摩尔蒸发焓随解:假设水蒸气为理想气体,并忽略水的摩尔蒸发焓随蒸气压力的变化蒸气压力的变化 ()()416.05 K416.05 Kvapmvapmvap,mvapmvapmvap,m373.15 K373.15 K142.9 C100 Cd142.9 C100 Cdp pHHCTHHCTD=D+DD=D+D v va ap p,mm,mm,mm3 36 62 21 11 13 36 62 21 11 1(g g,)(l l)2 29 9.1 16 61 14 4.4 49 91 10 0(/K K)2 2.0 02 22 21 10 0(/K K)7 76 6.5 56

34、 6 J J mmo ol lK K 4 47 7.4 40 01 14 4.4 49 91 10 0(/K K)2 2.0 02 22 21 10 0(/K K)J J mmo ol lK Kp pp pp pC CC CT TC CT TT TT TT T-DD=-=+=-+其中其中代入并积分得代入并积分得vapm416.05K36231373.15K11142.9 C40.6447.40 14.49 10(/K)2.022 10(/K)d/K10 kJ mol40.64 1.80 kJ mol38.64 kJ molHTTT计算结果与实测值相比,相对误差计算结果与实测值相比,相对误差()

35、3 38 8.8 84 43 38 8.4 43 33 38 8.4 43 31 1.0 07 7%-=2.7 2.7 化学反应焓化学反应焓1.1.反应进度反应进度描述反应描述反应 进行程度的物理量进行程度的物理量 定义式:定义式:d de ef fB BB Bd dd dn n n n=B BB B0B0Bn n=()BB,0BB,0B BBBBBnnnnn n nnnn-DD=积分得:积分得:A AB BY YZ ZA AB BY YZ Zn nn nn nn n n nn nn nn nDDDDDDDD=2.2.摩尔反应焓摩尔反应焓在恒定在恒定T T,恒定,恒定 p p及反应各组分组成不

36、变的情况下,若及反应各组分组成不变的情况下,若进行微量反应进度进行微量反应进度d d 引起反应焓的变化为引起反应焓的变化为 d dH H,则折合,则折合为进行单位反应进度引起的焓变为进行单位反应进度引起的焓变d dH H/d d 即为该条件下即为该条件下的摩尔反应焓的摩尔反应焓 r rmmB BB Bd dd dH HH HH Hn n DD=3.3.标准摩尔反应焓标准摩尔反应焓(1)标准态)标准态1 10 00 0 k kP Pa ap p=$气体:任意温度气体:任意温度T T,标准压力,标准压力 下表现出理想气体性质的纯气体状态下表现出理想气体性质的纯气体状态液体或固体液体或固体:任意温度

37、:任意温度T,压力为标准压力,压力为标准压力 的纯液体或纯固体状态。的纯液体或纯固体状态。1 10 00 0 k kP Pa ap p=$(2)标准摩尔反应焓)标准摩尔反应焓 反应中的各个组分均处在温度反应中的各个组分均处在温度T 的标准态下,其的标准态下,其摩尔反应焓就称为为该温度下的标准摩尔反应焓摩尔反应焓就称为为该温度下的标准摩尔反应焓 rmBrmBB BHHHHn nD=D=$B BH H$只是温度的函数,则只是温度的函数,则()()()r rmmB BB BH HT TH HT Tf f T Tn nDD=$注意:与实际反应的差别注意:与实际反应的差别理想气体反应:理想气体反应:rm

38、rmrmrmHHHHD=DD=D$r rmmr rmm1 12 2H HH HH HH HDD=DD+DD-DD$组成恒定组成恒定混合态混合态纯物质纯物质标准态标准态纯物质纯物质标准态标准态纯物质纯物质标准态标准态纯物质纯物质标准态标准态组成恒定组成恒定混合态混合态Tp、$Tp、$AaBbYyZzABabYZyzTp、$Tp、$Tp、Tp、rmH$rmH1H2H4.4.Q Qp p,m,m与与Q QV V,m,m的关系的关系()(),mm,mmr rmmr rmmr rmmr rmmr rmmr rmmmm p pV VT TQ QQ QH HU UU Up pV VU UU UU Up pV

39、 VU Up pV V-=DD-DD=DD+DD-DD=DD-DD+DD=DD+DDABabYZyzTpV、TpV、TpV、,mrmpQH,mrmVQU rmUmTUYZyz理想气体,固、液体理想气体,固、液体 T TU Umm=0 0,mm,mmp pV VQ QQ Qp pV V-=DD反应中如有液、固相,它们的体积变化很小,可只考反应中如有液、固相,它们的体积变化很小,可只考虑气体体积的变化,于是:虑气体体积的变化,于是:,m,mB(g),m,mB(g)pVpVQQRTQQRTn n-=-=仅为参与反应的气态物质计量数代数和仅为参与反应的气态物质计量数代数和 B(g)B(g)n n222

40、B(g)222B(g)2H(g)O(g)2H O(l)32H(g)O(g)2H O(l)3n n+=-+=-2 24 43 32 2B B(g g)N NH H C CO OO ON NH H(s s)2 2N NH H(g g)C CO O(g g)3 3n n+=66222B(g)66222B(g)1 1C H(l)7O(g)6CO(g)3H O(g)1.5C H(l)7O(g)6CO(g)3H O(g)1.52 2n n+=+=2-8 2-8 标准摩尔反应焓的计算标准摩尔反应焓的计算1.1.标准摩尔生成焓标准摩尔生成焓基础热数据:标准摩尔生成焓和标准摩尔燃烧焓基础热数据:标准摩尔生成焓和

41、标准摩尔燃烧焓 在温度为在温度为T T 的标准态下,由稳定相态的单质生成的标准态下,由稳定相态的单质生成化学计量数化学计量数n nB B=1=1的的 相态的化合物相态的化合物B(B(),该生成反,该生成反应的焓变即为该化合物应的焓变即为该化合物B(B()在温度在温度T T 时的标准摩时的标准摩尔生成焓尔生成焓 fmfm(,)(,)HTHTDD$1 1kJ molkJ mol-单位单位:(1)定义)定义自身自身0fmfmH稳定单质:稳定单质:O O2 2,N,N2 2,H,H2 2(g)(g),BrBr2 2(l)(l)C C(石墨石墨),S S(斜方晶斜方晶)(s)s)写化学反应计量式时,要注

42、明物质的相态写化学反应计量式时,要注明物质的相态298.15 K298.15 K2222C()O gCO gC()O gCO g标准态石墨()()+2 29 98 8.1 15 5 K K2 22 22 2H Hg gS S()2 2O O g gH H S SO O l l4标准态()正交()()+2 2CO gCO g()2 2H H S SO Ol l4()在在298.15 K298.15 K的标准摩尔生成焓对应如下反应的焓变:的标准摩尔生成焓对应如下反应的焓变:在在298.15 K298.15 K的标准摩尔生成焓对应如下反应的焓变:的标准摩尔生成焓对应如下反应的焓变:(2)由由 计算计

43、算 rHm:例:例:25,p 下:下:rHmCH3OH(g)CO(g)+2H2(g)C+(1/2)O2+2H2 fHm(CO)2 fHm(H2)fHm(CH3OH)rmfm3fmfm2fm3fm(CH OH)(CO)2(H)(CH OH)(CO)HHHHHH$25,p 下的下的 和和 可直接查表可直接查表(注(注:可直接写公式计算,不必写上面的过程)可直接写公式计算,不必写上面的过程)f fmmH HDD$fm3fm3(CH OH)(CH OH)H HDD$f fmm(C CO O)H HDD$()A AB BY YZ Z()()()a ab by yz z+()()r rmmf ff ff

44、ff fmm,Y Ymm,Z Zmm,B Bmm,A AB Bf fmm,B B$H Hy yH Hz zH Ha aH Hb bH HH Hn nDD=DD+DD-DD+DD=DD$即即298.15 K298.15 K下的标准摩尔反应焓等于同样温度下参与反下的标准摩尔反应焓等于同样温度下参与反应的各组分标准摩尔生成焓与其计量数乘积的代数和应的各组分标准摩尔生成焓与其计量数乘积的代数和 2.2.标准摩尔燃烧焓标准摩尔燃烧焓在温度为在温度为T T 的标准态下,由化学计量数的标准态下,由化学计量数n nB B=1=1的的 相态的物质相态的物质B(B()与氧进行完全氧化反应时与氧进行完全氧化反应时,

45、该,该反应的焓变即为该物质反应的焓变即为该物质B(B()在温度在温度T T 时的标准摩时的标准摩尔燃烧焓尔燃烧焓 1 1kJ molkJ mol-单位单位:(1)定义)定义c cmm(,)H HT TDD$“完全氧化完全氧化”是指在没有催化剂作用下的自然燃烧是指在没有催化剂作用下的自然燃烧含含C C元素:完全氧化产物为元素:完全氧化产物为 ,而不是而不是含含H H元素:完全氧化产物为元素:完全氧化产物为 ,而不是,而不是含含S S元素:完全氧化产物为元素:完全氧化产物为 ,而不是,而不是含含N N元素:完全氧化产物为元素:完全氧化产物为 2 2CO gCO g()C CO Og g()2 2H

46、 OH O(l)2 2H OH O(g)2 2S SO O(g)3 3S SO O(g)2 2N N(g)完全氧化物的完全氧化物的 c cmm0 0H HDD=$(2)由由 计算计算 rHm:25,p 下:下:rHmCH3OH(g)CO(g)+2H2(g)CO2+2H2O cHm(CO)2 cHm(H2)cHm(CH3OH)+1.5O2+1.5O2rmcm3cmcm2cmcm2cm3(CH OH)(CO)2(H)(CO)2(H)(CH OH)HHHHHHH$25,p 下的下的 cHm可直接查表可直接查表(注(注:可直接写公式计算,不必写上面的过程)可直接写公式计算,不必写上面的过程)c cmm

47、H HDD$r rmmB Bc cmm,B BH HH Hn nDD=-DD$()A AB BY YZ Z()()()a ab by yz z+即即298.15 K298.15 K下的标准摩尔反应焓等于同样温度下参下的标准摩尔反应焓等于同样温度下参与反应的各组分标准摩尔燃烧焓与其计量数乘积的与反应的各组分标准摩尔燃烧焓与其计量数乘积的代数和的负值代数和的负值 298.15K,298.15K,下的下的 可直接由手册查出可直接由手册查出 计算计算prmrmH f fm mH c cm mH 但其它温度的但其它温度的 如何计算?如何计算?rmrmH 3.3.随温度的变化随温度的变化 -基希霍夫基希霍

48、夫(Kirchhoff)(Kirchhoff)公式公式 r rm mHT 已知:已知:待求:待求:标准态标准态标准态标准态标准态标准态标准态标准态标准态标准态标准态标准态标准态标准态标准态标准态 A aT B b A a B bTTT298.15 K298.15 K298.15 K298.15 K Y y Y y Z z Z z1H2Hrm298.15 KH$rmHT$()()r rmmr rmm1 12 22 29 98 8.1 15 5 K KH HT TH HH HH HDD=DD+DD+DD$()()2 29 98 8.1 15 5K K1 1,mm,mmA A,B B,d dp pp

49、 pT TH Ha aC Cb bC CT TDD=+()()2 2,mm,mm2 29 98 8.1 15 5K KY Y,Z Z,d dT Tp pp pH Hy yC Cz zC CT TDD=+()()rmrmr,mrmrmr,m298.15K298.15K298.15 Kd298.15 KdT Tp pHTHCTHTHCTD=D+DD=D+D$()()()()()r r,mm,mm,mm,mm,mmB B,mmY Y,Z Z,A A,B B,B B,p pp pp pp pp pp pC Cy yC Cz zC Ca aC Cb bC CC Cn nDD=+-+=基希霍夫定律基希霍夫

50、定律不随不随T T变化变化rmrmH 微分式:微分式:()rmrmr,mr,md dd dp pHTHTC CT TDD=D=D$r r,mm0 0p pC CDD=()()rmrmrmrm298.15 K298.15 KHTHHTHD=DD=D$r r,mm0 0常数p pC CDD=()()()r rmmr rmmr r,mm2 29 98 8.1 15 5K K2 29 98 8.1 15 5K Kp pH HT TH HC CT TDD=DD+DD-$其它其它T T、p p下的反应:下的反应:设计过程:设计过程:2525、p p 下的下的 r rH Hmm +pVTpVT变化变化对于理

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(物理化学热力学第一定律课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|