1、初三数学下册第初三数学下册第26章二次章二次函数复习课件(新版)华东函数复习课件(新版)华东师大版师大版复习要点巩固训练能力训练例题讲解归纳小结退出退出一、定义一、定义二、顶点与对称轴二、顶点与对称轴三、关系式的求法三、关系式的求法四、图象位置与四、图象位置与a、b、c、的的正负关系正负关系一、定义一、定义二、顶点与对称轴二、顶点与对称轴四、图象位置与四、图象位置与a、b、c、的的正负关系正负关系一般地,如果一般地,如果 y=ax2+bx+c(a,b,c 是常数,是常数,a0),那么,那么,y叫做叫做x的的二次函数二次函数。三、关系式的求法三、关系式的求法一、定义一、定义二、顶点与对称轴二、顶
2、点与对称轴三、关系式的求法三、关系式的求法四、图象位置与四、图象位置与a、b、c、的的正负关系正负关系y=ax2+bx+cy=a(x+)2+b2a4ac-b24a 对称轴对称轴:x=b2a顶点坐标顶点坐标:(:(,)b2a4ac-b24a一、定义一、定义二、顶点与对称轴二、顶点与对称轴三、关系式的求法三、关系式的求法四、图象位置与四、图象位置与a、b、c、的的正负关系正负关系 关系式关系式使用范使用范围围一般一般式式已知任意三个点顶点顶点式式已知顶点(-h,k)及另一点交点交点式式已知与x轴的两个交点及另一个点y=ax2+bx+cy=a(x+h)2+ky=a(x-x1)(x-x2)(1)a确定
3、抛物线的开口方向:确定抛物线的开口方向:a0a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00 x=-b2a例例1:已知二次函数y=x2+x-(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求
4、C,A,B的坐标。(3)画出函数图象的示意图。(4)求MAB的周长及面积。(5)x为何值时,y随的增大而减小,x为何值时,y有最大 (小)值,这个最大(小)值是多少?(6)x为何值时,y0?1232例例1:已知二次函数y=x2+x-(1)求抛物线开口方向,对称轴和顶点)求抛物线开口方向,对称轴和顶点M的坐标。的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C,A,B的坐标。(3)画出函数图象的示意图。(4)求MAB的周长及面积。(5)x为何值时,y随的增大而减小,x为何值时,y有最大 (小)值,这个最大(小)值是多少?(6)x为何值时,y0?1232解解:(1)a=0 抛物线的开
5、口向上抛物线的开口向上 y=(x2+2x+1)-2=(x+1)2-2 对称轴对称轴x=-1,顶点坐标,顶点坐标M(-1,-2)121212例例1:已知二次函数y=x2+x-(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与)设抛物线与y轴交于轴交于C点,与点,与x轴交于轴交于A、B两点,求两点,求C,A,B的坐标。的坐标。(3)画出函数图象的示意图。(4)求MAB的周长及面积。(5)x为何值时,y随的增大而减小,x为何值时,y有最大 (小)值,这个最大(小)值是多少?(6)x为何值时,y0?1232解解:(2)由由x=0,得,得y=-抛物线与抛物线与y轴的交点轴的交点C(0,-)由
6、由y=0,得,得x2+x-=0 x1=-3 x2=1 与与x轴交点轴交点A(-3,0)B(1,0)32323212例例1:已知二次函数y=x2+x-(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C,A,B的坐标。(3)画出函数图象的示意图。)画出函数图象的示意图。(4)求MAB的周长及面积。(5)x为何值时,y随的增大而减小,x为何值时,y有最大 (小)值,这个最大(小)值是多少?(6)x为何值时,y0?1232解解0 xy(3)连线连线画对称轴画对称轴x=-1确定顶点确定顶点(-1,-2)(0,-)确定与坐标轴的交点确定与坐标轴的交点及对
7、称点及对称点(-3,0)(1,0)3 2例例1:已知二次函数y=x2+x-(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C,A,B的坐标。(3)画出函数图象的示意图。(4)求)求MAB的周长及面积。的周长及面积。(5)x为何值时,y随的增大而减小,x为何值时,y有最大 (小)值,这个最大(小)值是多少?(6)x为何值时,y0?1232解解0M(-1,-2)C(0,-)A(-3,0)B(1,0)3 2yxD:(4)由对称性可知)由对称性可知MA=MB=22+22=22AB=|x1-x2|=4 MAB的周长的周长=2MA+AB=2 22+4=4
8、 2+4MAB的面积的面积=ABMD=42=41212例例1:已知二次函数y=x2+x-(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C,A,B的坐标。(3)画出函数图象的示意图。(4)求MAB的周长及面积。(5)x为何值时,为何值时,y随的增大而减小,随的增大而减小,x为何值时,为何值时,y有最大有最大 (小)值,这个最大(小)值是多少?(小)值,这个最大(小)值是多少?(6)x为何值时,y0?1232解解解解0 xx=-1(0,-)(-3,0)(1,0)3 2:(5)(-1,-2)当当x=-1时,时,y有最小值为有最小值为y最小值最小值
9、=-2当当x-1时,时,y随随x的增大的增大而减小而减小;例例1:已知二次函数y=x2+x-(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C,A,B的坐标。(3)画出函数图象的示意图。(4)求MAB的周长及面积。(5)x为何值时,y随的增大而减小,x为何值时,y有最大 (小)值,这个最大(小)值是多少?(6)x为何值时,为何值时,y0?1232解解:0(-1,-2)(0,-)(-3,0)(1,0)3 2yx由图象可知由图象可知(6)当当x1时,时,y 0当当-3 x 1时,时,y 0返回巩固练习巩固练习(1)二次函数)二次函数y=x2-x-
10、6的图象顶点坐标的图象顶点坐标是是_对称轴是对称轴是_。(2)抛物线抛物线y=-2x2+4x与与x轴的交点坐轴的交点坐标是标是_(3)已知函数)已知函数y=x2-x-4,当函数值,当函数值y随随x的增大而减小时,的增大而减小时,x的取值范围是的取值范围是_(4)二次函数)二次函数y=mx2-3x+2m-m2的图象的图象经过原点,则经过原点,则m=_。12(,-)125 24x=12(0,0)(2,0)x12返回如图,在ABC中B=90,AB=12cm,BC=24cm,动点P从A开始沿AB边以2cm/s的速度向B运动,动点Q从B开始沿BC边以4cm/s的速度向C运动,如果P、Q分别从A、B同时出
11、发。(1)写出PBQ的面积S与运动时间t之间的函数关系式,并写出自变量t的取值范围;(2)当t为何值时,PBQ的面积S最大,最大值是多少?QPCBA 例例2;BP=12-2t,BQ=4tPBQ的面积的面积:S=1/2(12-2t)4t即即S=-4t+24t=-4(t-3)+36 ODCBAE 课时训练课时训练ABE ADCAB AC=AD AEX(12-X)=2y 3y=-1/6x+2X能力训练能力训练 二次函数的图象如图所示,则在下列各不等式二次函数的图象如图所示,则在下列各不等式中成立的个数是中成立的个数是_1-10 xy返回abc0 a+b+c b2a+b=0 =b-4ac 0归纳小结:归纳小结:(1)二次函数)二次函数y=ax2+bx+c及抛物线的性质和应用及抛物线的性质和应用 注意:图象的递增性,以及利用图象求自变量注意:图象的递增性,以及利用图象求自变量x或函或函数值数值y的取值范围的取值范围返回 (2)a,b,c,的正负与图象的位置关系的正负与图象的位置关系 注意:图象与轴有两个交点注意:图象与轴有两个交点A(x1,0),),B(x2,0)时)时AB=|x2-x1|这一结论这一结论