1、 函数的应用复习课函数的应用复习课(1)若镜面玻璃的长是y m,面积为1m2,求y与x之间的函数关系式,并画出该函数图象的草图;(2)若镜面玻璃的长与宽的比是2 1,其周长是l m,求l与x之间的函数关系式,并画出该函数图象的草图;(3)若镜面玻璃的长与宽的比是2 1,其面积是s m2,求s与x之间的函数关系式,并画出该函数图象的草图;x如图,是一块长方形的镜面玻璃,玻璃的宽是 x m问题1(1)上面的问题,你能比较它们的不同之处吗?请做出解释.(2)你是如何得到函数关系式的?(3)在实际问题中,你所得到的函数的自变量有什么要求?现有一块长方形的镜面玻璃,玻璃的宽是 x m,在它的四周镶上与它
2、的周长相等的边框,制成一面镜子镜子的长与宽的比是2 1,已知边框的价格是每米10元(1)若制作边框的费用为y元,求y与x之间的函数关系式;解:因为镜子的长与宽的比是2 1,玻璃的宽是x m,所以镜子的长是2 x m y=102(2x+x)=60 x 问题2(2)若镜面玻璃的价格是每平方米50元,另外制作这面镜子还需加工费10元 求制作这面镜子的总费用w(单位:元)与x之间的函数关系式;如果制作这面镜子共花了17元,求这面镜子的长和宽 解:w=502x2+60 x+10=100 x2 +60 x+10;当w=17时,100 x2 +60 x+10=17,解得 x=0.1,x=-0.7(不合题意,
3、舍去)所以这面镜子的长是0.2m,宽是0.1m.该厂生产了一种成本为20元个的小镜子投放市场进行试销经过调查,得到如下数据:1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的y(个)与x(元个)之间的关系式;问题3(你是如何判断y与x之间的关系是哪一种函数关系的?思考实际问题函数模型求函数关系式的方法注意自变量的取值范围一次函数反比例函数二次函数1水产公司有一种海产品共水产公司有一种海产品共2 104千克,为寻求合适的销售价格,进行了千克,为寻求合适的销售价格,进行了8天试天试销,试销情况如下:销,试销情况如下:观察表中数据,发现可以用反比例函数刻画
4、这种海产品的每天销售观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量量y(千克千克)与销售价格与销售价格x(元元/千克千克)之间的关系现假定在这批海产品之间的关系现假定在这批海产品的销售中,每天的销售量的销售中,每天的销售量y(千克千克)与销售价格与销售价格x(元元/千克千克)之间都满足之间都满足这一关系这一关系(1)写出这个反比例函数的解析式,并补全表格;写出这个反比例函数的解析式,并补全表格;(2)在试销在试销8天后,公司决定将这种海产品的销售价格定为天后,公司决定将这种海产品的销售价格定为150元元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?用多少天可以全部售出?yx421406080ABCDxyo20015010201.回顾解决问题的过程,思考函数在解决问题过程中的作用;2.回顾建立函数模型的过程,思考如何求出函数关系式;3.回顾在解决问题过程中遇到的困难和出现的错误,思考在用函数解决实际问题时有哪些需要引起重视的地方.