1、二次函数与的图象与性质【要点梳理】要点一、二次函数的概念1.二次函数的概念一般地,形如y=ax2+bx+c(a0,a, b, c为常数)的函数是二次函数. 若b=0,则y=ax2+c; 若c=0,则y=ax2+bx; 若b=c=0,则y=ax2. 以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c(a0)是二次函数的一般式.二次函数由特殊到一般,可分为以下几种形式: ;,其中,;.要点诠释:如果y=ax2+bx+c(a,b,c是常数,a0),那么y叫做x的二次函数这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零a 的绝对值越大,抛物线的开口越小.2.二次函数解析式
2、的表示方法1. 一般式:(,为常数,);2. 顶点式:(,为常数,);3. 两根式:(,是抛物线与轴两交点的横坐标)(或称交点式).要点诠释:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以用交点式表示二次函数解析式的这三种形式可以互化.要点二、二次函数y=ax2(a0)的图象及性质1.二次函数y=ax2(a0)的图象用描点法画出二次函数y=ax2(a0)的图象,如图,它是一条关于y轴对称的曲线,这样的曲线叫做抛物线. 因为抛物线y=x2关于y轴对称,所以y轴是这条抛物线的对称轴,对称轴与抛物线的交点是抛物线的
3、顶点,从图上看,抛物线y=x2的顶点是图象的最低点。因为抛物线y=x2有最低点,所以函数y=x2有最小值,它的最小值就是最低点的纵坐标. 2.二次函数y=ax2(a0)的图象的画法用描点法画二次函数y=ax2(a0)的图象时,应在顶点的左、右两侧对称地选取自变量x的值,然后计算出对应的y值,这样的对应值选取越密集,描出的图象越准确.要点诠释:二次函数y=ax2(a0)的图象用描点法画二次函数y=ax2(a0)的图象,该图象是轴对称图形,对称轴是y轴y=ax2(a0)是最简单的二次函数,把y=ax2(a0)的图象左右、上下平行移动可以得到y=ax2+bx+c(a0)的图象画草图时应抓住以下几点:
4、开口方向,对称轴,顶点,与轴的交点,与轴的交点.3.二次函数y=ax2(a0)的图象的性质二次函数y=ax2(a0)的图象的性质,见下表: 函数 图象 开口方向 顶点坐标 对称轴 函数变化 最大(小)值 y=ax2 a0 向上 (0,0) y轴 x0时,y随x增大而增大; x0时,y随x增大而减小. 当x=0时, y最小=0 y=ax2 a0时,y随x增大而减小; x0时,y随x增大而增大. 当x=0时, y最大=0 要点诠释: 顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. a相同,抛物线的开口大小、形状相同.a越大
5、,开口越小,图象两边越靠近y轴,a越小,开口越大,图象两边越靠近x轴.要点三、二次函数y=ax2+c(a0)的图象及性质 1.二次函数y=ax2+c(a0)的图象(1) (2) 2.二次函数y=ax2+c(a0)的图象的性质关于二次函数的性质,主要从抛物线的开口方向、顶点、对称轴、函数值的增减性以及函数的最大值或最小值等方面来研究下面结合图象,将其性质列表归纳如下:函数图象开口方向向上向下顶点坐标(0,c)(0,c)对称轴y轴y轴函数变化当时,y随x的增大而增大;当时,y随x的增大而减小.当时,y随x的增大而减小;当时,y随x的增大而增大.最大(小)值当时,当时,3.二次函数与之间的关系;(上
6、加下减).的图象向上(c0)【或向下(c0)】平移c个单位得到的图象.要点诠释:抛物线的对称轴是y轴,顶点坐标是(0,c),与抛物线的形状相同函数的图象是由函数的图象向上(或向下)平移个单位得到的,顶点坐标为(0,c) 抛物线y=ax2(a0)的对称轴、最值与顶点密不可分,其对称轴即为过顶点且与x轴垂直的一条直线,其顶点横坐标x=0,抛物线平移不改变抛物线的形状,即a的值不变,只是位置发生变化而已【典型例题】类型一、二次函数的概念【例1】下列函数中,是关于x的二次函数的是_(填序号) (1)y=3x2;(2);(3)y=3x24x3;(4);(5)y=ax2+3x+6; (6)【变式】如果函数
7、是二次函数,求m的值类型二、二次函数y=ax2(a0)的图象及性质【例2】函数y=x2的图象对称轴左侧上有两点A(a,15),B(b,),则a-b_0(填“”、“”或“=”号)【变式1】二次函数与的形状相同,开口大小一样,开口方向相反,则 【变式2】不计算比较大小:函数的图象左侧上有两点A(a,15),B(b,0.5),则a b类型三、二次函数y=ax2+c(a0)的图象及性质【例3】求下列抛物线的解析式:(1)与抛物线形状相同,开口方向相反,顶点坐标是(0,5)的抛物线;(2)顶点为(0,1),经过点(3,-2)并且关于y轴对称的抛物线【例4】在同一直角坐标系中,画出和的图象,并根据图象(如
8、图所示)回答下列问题 (1)抛物线向_平移_个单位得到抛物线; (2)抛物线,开口方向是_,对称轴为_,顶点坐标为_;(3)抛物线,当x_时,随x的增大而减小;当x_时,函数y有最_值,其最_值是_二次函数y=a(x-h)2+k(a0)的图象与性质【要点梳理】要点一、函数与函数的图象与性质1.函数的图象与性质 的符号开口方向顶点坐标对称轴性质向上(h,0)x=h时,随的增大而增大;时,随的增大而减小;时,有最小值0向下(h,0)x=h时,随的增大而减小;时,随的增大而增大;时,有最大值02.函数的图象与性质的符号开口方向顶点坐标对称轴性质向上x=h时,随的增大而增大;时,随的增大而减小;时,有
9、最小值向下x=h时,随的增大而减小;时,随的增大而增大;时,有最大值要点诠释:二次函数的图象常与直线、三角形、面积问题结合在一起,借助它的图象与性质运用数形结合、函数、方程思想解决问题要点二、二次函数的平移1.平移步骤: 将抛物线解析式转化成顶点式,确定其顶点坐标; 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下: 2.平移规律: 在原有函数的基础上“值正右移,负左移;值正上移,负下移”概括成八个字“左加右减,上加下减”要点诠释:(1)沿轴平移:向上(下)平移个单位,变成(或)(2)沿x轴平移:向左(右)平移个单位,变成(或)【典型例题】类型一、二次函数图象及性质【例1】将抛物线作下
10、列移动,求得到的新抛物线的解析式 (1)向左平移2个单位,再向下平移3个单位; (2)顶点不动,将原抛物线开口方向反向; (3)以x轴为对称轴,将原抛物线开口方向反向【变式】将抛物线向右平移2个单位,再向上平移5个单位,得到的抛物线解析式为 【例2】把抛物线向上平移2个单位,再向左平移4个单位,得到抛物线,求b,c的值.【变式】二次函数的图象可以看作是二次函数的图象向 平移4个单位,再向 平移3个单位得到的类型二、二次函数性质的综合应用【例3】已知与的图象交于A、B两点,其中A(0,-1),B(1,0)(1)确定此二次函数和直线的解析式;(2)当时,写出自变量x的取值范围【例4】在同一直角坐标
11、系中,画出下列三条抛物线:,(1)观察三条抛物线的相互关系,并分别指出它们的开口方向、对称轴和顶点坐标;(2)请你说出抛物线的开口方向,对称轴及顶点坐标二次函数y=ax2+bx+c(a0)的图象与性质【要点梳理】要点一、二次函数与之间的相互关系1.顶点式化成一般式从函数解析式我们可以直接得到抛物线的顶点(h,k),所以我们称为顶点式,将顶点式去括号,合并同类项就可化成一般式2.一般式化成顶点式 对照,可知, 抛物线的对称轴是直线,顶点坐标是要点诠释:1抛物线的对称轴是直线,顶点坐标是,可以当作公式加以记忆和运用2求抛物线的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各
12、自的优缺点,应根据实际灵活选择和运用要点二、二次函数的图象的画法1.一般方法:列表、描点、连线;2.简易画法:五点定形法. 其步骤为: (1)先根据函数解析式,求出顶点坐标和对称轴,在直角坐标系中描出顶点M,并用虚线画出对称轴 (2)求抛物线与坐标轴的交点,当抛物线与x轴有两个交点时,描出这两个交点A、B及抛物线与y轴的交点C,再找到点C关于对称轴的对称点D,将A、B、C、D及M这五个点按从左到右的顺序用平滑曲线连结起来要点诠释:当抛物线与x轴只有一个交点或无交点时,描出抛物线与y轴的交点C及对称点D,由C、M、D三点可粗略地画出二次函数图象的草图;如果需要画出比较精确的图象,可再描出一对对称
13、点A、B,然后顺次用平滑曲线连结五点,画出二次函数的图象,要点三、二次函数的图象与性质1.二次函数图象与性质函数二次函数(a、b、c为常数,a0)图象开口方向向上向下对称轴直线直线顶点坐标增减性在对称轴的左侧,即当时,y随x的增大而减小;在对称轴的右侧,即当时,y随x的增大而增大简记:左减右增在对称轴的左侧,即当时,y随x的增大而增大;在对称轴的右侧,即当时,y随x的增大而减小简记:左增右减最大(小)值抛物线有最低点,当时,y有最小值,抛物线有最高点,当时,y有最大值, 2.二次函数图象的特征与a、b、c及b2-4ac的符号之间的关系项目字母字母的符号图象的特征aa0开口向上a0开口向下bab
14、0(a,b同号)对称轴在y轴左侧ab0(a,b异号)对称轴在y轴右侧cc=0图象过原点c0与y轴正半轴相交c0与y轴负半轴相交b2-4acb2-4ac=0与x轴有唯一交点b2-4ac0与x轴有两个交点b2-4ac0与x轴没有交点要点四、求二次函数的最大(小)值的方法如果自变量的取值范围是全体实数,那么函数在顶点处取得最大(或最小)值,即当时,要点诠释:如果自变量的取值范围是x1xx2,那么首先要看是否在自变量的取值范围x1xx2内,若在此范围内,则当时,若不在此范围内,则需要考虑函数在x1xx2范围内的增减性,如果在此范围内,y随x的增大而增大,则当x=x2时,;当x=x1时,如果在此范围内,
15、y随x的增大而减小,则当x=x1时,;当x=x2时,如果在此范围内,y值有增有减,则需考察x=x1,x=x2,时y值的情况【典型例题】类型一、二次函数的图象与性质【例1】求抛物线的对称轴和顶点坐标【变式】把一般式化为顶点式(1)写出其开口方向、对称轴和顶点D的坐标;(2)分别求出它与y轴的交点C,与x轴的交点A、B的坐标.【例2】如图所示,抛物线的对称轴是x=1,与x轴交于A、B两点,点B的坐标为(,0),则点A的坐标是_ 类型二、二次函数的最值【例3】求二次函数的最小值.【变式】用总长60m的篱笆围成矩形场地矩形面积S随矩形一边长L的变化而变化当L是多少时,矩形场地的面积S最大?类型三、二次
16、函数性质的综合应用【例4】已知二次函数的图象过点P(2,1)(1)求证:; (2)求bc的最大值待定系数法求二次函数的解析式【要点梳理】要点一、用待定系数法求二次函数解析式1.二次函数解析式常见有以下几种形式 : (1)一般式:(a,b,c为常数,a0); (2)顶点式:(a,h,k为常数,a0); (3)交点式:(,为抛物线与x轴交点的横坐标,a0)2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下第一步,设:先设出二次函数的解析式,如或,或,其中a0; 第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组); 第三步,解:解此方
17、程或方程组,求待定系数; 第四步,还原:将求出的待定系数还原到解析式中要点诠释:在设函数的解析式时,一定要根据题中所给条件选择合适的形式:当已知抛物线上的三点坐标时,可设函数的解析式为;当已知抛物线的顶点坐标或对称轴或最大值、最小值时可设函数的解析式为;当已知抛物线与x轴的两个交点(x1,0),(x2,0)时,可设函数的解析式为【典型例题】类型一、用待定系数法求二次函数解析式【例1】已知二次函数的图象过(1,9)、(1,3)和(3,5)三点,求此二次函数的解析式.【变式】已知:抛物线经过A(0,),B(1,),C(,)三点,求它的顶点坐标及对称轴【例2】已知二次函数的图象以A(1,4)为顶点,
18、且过点B(2,5),求该函数的关系式.【变式】在直角坐标平面内,二次函数图象的顶点为,且过点.(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与轴的另一个交点的坐标.【例3】已知二次函数的图象如图所示,求此抛物线的解析式 类型二、用待定系数法解题【例4】已知抛物线经过(3,5),A(4,0),B(-2,0),且与y轴交于点C (1)求二次函数解析式; (2)求ABC的面积用函数观点看一元二次方程【要点梳理】要点一、二次函数与一元二次方程的关系1.二次函数图象与x轴的交点情况决定一元二次方程根的情况求二次函数(a0)的图
19、象与x轴的交点坐标,就是令y=0,求中x的值的问题此时二次函数就转化为一元二次方程,因此一元二次方程根的个数决定了抛物线与x轴的交点的个数,它们的关系如下表:判别式二次函数一元二次方程图象与x轴的交点坐标根的情况0抛物线与x轴交于,两点,且,此时称抛物线与x轴相交一元二次方程有两个不相等的实数根=0抛物线与x轴交切于这一点,此时称抛物线与x轴相切一元二次方程有两个相等的实数根0抛物线与x轴无交点,此时称抛物线与x轴相离一元二次方程在实数范围内无解(或称无实数根)要点诠释: 二次函数图象与x轴的交点的个数由的值来确定的. (1)当二次函数的图象与x轴有两个交点时,方程有两个不相等的实根;(2)当
20、二次函数的图象与x轴有且只有一个交点时,方程有两个相等的实根;(3)当二次函数的图象与x轴没有交点时,方程没有实根.2.抛物线与直线的交点问题抛物线与x轴的两个交点的问题实质就是抛物线与直线的交点问题我们把它延伸到求抛物线(a0)与y轴交点和二次函数与一次函数的交点问题抛物线(a0)与y轴的交点是(0,c)抛物线(a0)与一次函数(k0)的交点个数由方程组的解的个数决定 当方程组有两组不同的解时两函数图象有两个交点; 当方程组有两组相同的解时两函数图象只有一个交点; 当方程组无解时两函数图象没有交点 总之,探究直线与抛物线的交点的问题,最终是讨论方程(组)的解的问题要点诠释:求两函数图象交点的
21、问题主要运用转化思想,即将函数的交点问题转化为求方程组解的问题或者将求方程组的解的问题转化为求抛物线与直线的交点问题要点二、利用二次函数图象求一元二次方程的近似解用图象法解一元二次方程的步骤:1.作二次函数的图象,由图象确定交点个数,即方程解的个数;2. 确定一元二次方程的根的取值范围即确定抛物线与x轴交点的横坐标的大致范围;3. 在(2)确定的范围内,用计算器进行探索.即在(2)确定的范围内,从大到小或从小到大依次取值,用表格的形式求出相应的y值4.确定一元二次方程的近似根在(3)中最接近0的y值所对应的x值即是一元二次方的近似根要点诠释:求一元二次方程的近似解的方法(图象法):(1)直接作
22、出函数的图象,则图象与x轴交点的横坐标就是方程的根;(2)先将方程变为再在同一坐标系中画出抛物线和直线图象交点的横坐标就是方程的根;(3)将方程化为,移项后得,设和,在同一坐标系中画出抛物线和直线的图象,图象交点的横坐标即为方程的根.要点三、抛物线与x轴的两个交点之间的距离公式当0时,设抛物线与x轴的两个交点为A(,0),B(,0),则、是一元二次方程的两个根由根与系数的关系得, 即 (0)要点四、抛物线与不等式的关系二次函数(a0)与一元二次不等式(a0)及(a0)之间的关系如下:判别式抛物线与x轴的交点不等式的解集不等式的解集0或=0(或)无解0全体实数无解注:a0的情况请同学们自己完成要
23、点诠释:抛物线在x轴上方的部分点的纵坐标都为正,所对应的x的所有值就是不等式的解集;在x轴下方的部分点的纵坐标都为负,所对应的x的所有值就是不等式的解集不等式中如果带有等号,其解集也相应带有等号【典型例题】类型一、二次函数图象与坐标轴交点【例1】已知二次函数y=(m-2)x2+2mx+m+1,其中m为常数,且满足-1m2,试判断此抛物线的开口方向,与x轴有无交点,与y轴的交点在x轴上方还是在x轴下方.【变式】二次函数y=mx2+(2m-1)x+m+1的图象总在x轴的上方,求m的取值范围.类型二、利用图象法求一元二次方程的解【例2】用图象法求一元二次方程的近似解(精确到0.1)类型三、二次函数与
24、一元二次方程的综合运用【例3】已知二次函数与一次函数交于A、B两点 (1)求A、B两点的坐标;(2)求AOB的面积;(3)判断当x为何值时,y1y2.【变式】已知点A(-1,-1)在抛物线上,点B与点A关于抛物线的对称轴对称,(1)求的值和点B的坐标;(2)是否存在与此抛物线仅有一个公共点B的直线?【例4】已知:如图所示,一次函数的图象与x轴交于点A,与y轴交于点B;二次函数的图象与一次函数的图象交于B、C两点,与x轴交于D、E两点,且D点坐标为(1,0) (1)求二次函数的解析式; (2)求四边形BDEC的面积S 实际问题与二次函数【要点梳理】要点一、列二次函数解应用题 列二次函数解应用题与
25、列整式方程解应用题的思路和方法是一致的,不同的是,学习了二次函数后,表示量与量的关系的代数式是含有两个变量的等式对于应用题要注意以下步骤: (1)审清题意,弄清题中涉及哪些量,已知量有几个,已知量与变量之间的基本关系是什么,找出等量关系(即函数关系) (2)设出两个变量,注意分清自变量和因变量,同时还要注意所设变量的单位要准确 (3)列函数表达式,抓住题中含有等量关系的语句,将此语句抽象为含变量的等式,这就是二次函数 (4)按题目要求,结合二次函数的性质解答相应的问题。 (5)检验所得解是否符合实际:即是否为所提问题的答案 (6)写出答案要点诠释:常见的问题:求最大(小)值(如求最大利润、最大
26、面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.要点二、建立二次函数模型求解实际问题 一般步骤:(1)恰当地建立直角坐标系;(2)将已知条件转化为点的坐标;(3)合理地设出所求函数关系式;(4)代入已知条件或点的坐标,求出关系式;(5)利用关系式求解问题要点诠释:(1)利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.(2)对于本节的
27、学习,应由低到高处理好如下三个方面的问题:首先必须了解二次函数的基本性质; 学会从实际问题中建立二次函数的模型;借助二次函数的性质来解决实际问题.【典型例题】类型一、利用二次函数求实际问题中的最大(小)值【例1】某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量m(件)与每件的销售价x(元)满足一次函数:m=162-3x (1)写出商场卖出这种商品每天的销售利润y与每件的销售价x之间的函数关系;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?【变式】某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不超
28、过45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数,且时,;时, (1)若该商场获利为w元,试写出利润w与销售单价x之间的关系式,售价定为多少元时,商场可以获利最大,最大利润为多少元? (2)若该商场获利不低于500元,试确定销售单价x的范围类型二、利用二次函数解决抛物线形建筑问题【例2】如图所示,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米现以O点为原点,OM所在直线为x轴建立直角坐标系 (1)直接写出点M及抛物线顶点P的坐标; (2)求这条抛物线的解析式; (3)若要搭建一个矩形支撑架ADCB,使C、D点在抛物线上,A、B点在地面OM上,则这个“支撑架”
29、总长的最大值是多少? 类型三、利用二次函数求跳水、投篮等实际问题【例3】某跳水运动员进行10 m跳台跳水训练时,身体(看作一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为已知条件)在跳某个规定动作时,正常情况下,该运动员在空中最高处距水面m,入水处距池边的距离为4 m,同时,运动员在距离水面高度为5m以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误 (1)求这条抛物线的关系式;(2)在某次试跳中测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为m,问此次跳水会不会失误?并通过计算说明理由 【变式】一位
30、运动员在距篮下水平距离4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈,已知篮圈中心到地面的距离为3.05米. 若该运动员身高1.8米,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?类型四、利用二次函数求图形面积问题【例4】在一边靠墙的空地上,用砖墙围成三格矩形场地,如图所示已知砖墙在地面上占地总长度160 m,问分隔墙在地面上的长度x为多少时所围场地总面积最大?并求最大面积? 二次函数【要点梳理】要点一、二次函数的定义一般地,如果y=ax2+bx+c(a,b,c是常数,a0),那么y叫做x的二次函数.要点诠释:
31、如果y=ax2+bx+c(a,b,c是常数,a0),那么y叫做x的二次函数这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零a 的绝对值越大,抛物线的开口越小.要点二、二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式:y=ax2;y=ax2+k;y=a(xh)2;y=a(xh)2+k,其中,;y=ax2+bx+c.(以上式子a0)几种特殊的二次函数的图象特征如下:函数解析式开口方向对称轴顶点坐标y=ax2当时开口向上当时开口向下x=0(y轴)(0,0)y=ax2+kx=0(y轴)(0,k)y=a(xh)2x=h(h,0)y=a(xh)2+kx=h(h,k)y
32、=ax2+bx+c2. 抛物线的三要素:开口方向、对称轴、顶点.(1)a的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同.(2)平行于y轴(或重合)的直线记作x=h.特别地,y轴记作直线x=0.3.抛物线中,的作用:(1)a决定开口方向及开口大小,这与y=ax2中的a完全一样.(2)b和a共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线, 故:b=0时,对称轴为y轴;(即a、b同号)时,对称轴在y轴左侧;(即 a、b异号)时,对称轴在轴右侧.(3)c的大小决定抛物线y=ax2+bx+c与轴交点的位置. 当x=0时,y=c,抛物线y=ax2+bx+
33、c与y轴有且只有一个交点(0,c): c=0,抛物线经过原点; ,与轴交于正半轴;,与y轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y轴右侧,则 .4.用待定系数法求二次函数的解析式:(1)一般式:y=ax2+bx+c(a0).已知图象上三点或三对x、y的值,通常选择一般式.(2)顶点式:y=a(xh)2+k(a0).已知图象的顶点或对称轴,通常选择顶点式.(可以看成y=ax2的图象平移后所对应的函数.)(3)“交点式”:已知图象与轴的交点坐标x1、x2,通常选用交点式: (a0).(由此得根与系数的关系:).要点诠释:求抛物线(a0)的对称轴和顶点坐标通常用三种方
34、法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用要点三、二次函数与一元二次方程的关系函数(a0),当y=0时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x轴交点的横坐标,因此二次函数图象与x轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x轴没有交点,这时,则方程没有实根. 通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解方程有两个相等实数解方程没
35、有实数解要点诠释: 二次函数图象与x轴的交点的个数由的值来确定. (1)当二次函数的图象与x轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x轴没有交点,这时,则方程没有实根.要点四、利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.利用二次函数解决实际问题的一般步骤是:(1)建立适当的平面直角坐标系;(2)把
36、实际问题中的一些数据与点的坐标联系起来;(3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题.要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.【典型例题】类型一、求二次函数的解析式【例1】已知二次函数的图象经过原点及点,且图象与x轴的另一交点到原点的距离为1,则该二次函数的解析式为 【变式】已知:抛物线y=x2+bx+c的对称轴为x=1,交x轴于点A、B(A在B的左侧),且AB=4,交y轴于点C.求此抛物线的
37、函数解析式及其顶点M的坐标.类型二、根据二次函数图象及性质判断代数式的符号【例2】一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象大致是() A B C D类型三、数形结合【例3】如图所示是二次函数图象的一部分,其对称轴为直线x=1,若其与x轴一交点为(3,0),则由图象可知,不等式的解集是_ 类型四、函数与方程【例4】已知抛物线与x轴没有交点求c的取值范围; 试确定直线经过的象限,并说明理由【变式1】无论x为何实数,二次函数y=ax2+bx+c的图象永远在x轴的下方的条件是( ) AB C D【变式2】对于二次函数y=ax2+bx+c(a0),我们把使函数值等于0的实数
38、x叫做这个函数的零点, 则二次函数y=x2-mx+m-2(m为实数)的零点的个数是( ) A1 B2 C0 D不能确定类型五、分类讨论【例5】已知点A(1,1)在二次函数的图象上 (1)用含a的代数式表示b; (2)如果该二次函数的图象与x轴只有一个交点,求这个二次函数的图象的顶点坐标类型六、二次函数与实际问题【例6】为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y(台)与补贴款额x(元)之间大致满足图1所示的一次函数关系随着补贴款额x的不断增大,销售量也不断增大,但每台彩电的收益z(元)会相应降低且z与x之间也大致满足图2所示的一次函数关系 (1)在政府出台补贴措施前,该商场销售彩电的总收益额为多少元? (2)在政府补贴政策实施后,分别求出该商场销售彩电台数y和每台家电的收益z与政府补贴款额x之间的函数关系式; (3)要使该商场销售彩电的总收益w(元)最大,政府应将每台补贴款额x定为多少?并求出总收益w的最大值