1、3.1.1空间向量及其线性运算空间向量及其线性运算复习回顾:平面向量1、定义:既有大小又有方向的量。几何表示法:用有向线段表示字母表示法:用小写字母表示,或者用表示向量的有向线段的起点和终点字母表示。相等向量:长度相等且方向相同的向量ABCD2、平面向量的加法、减法与数乘运算向量加法的三角形法则ab向量加法的平行四边形法则ba向量减法的三角形法则aba ba (k0)ka (k0)ka (k0)k空间向量的数乘空间向量的加减法abOABba结论:空间任意两个向量都是共面向量,所以它们可用结论:空间任意两个向量都是共面向量,所以它们可用同一平面内的两条有向线段表示。同一平面内的两条有向线段表示。
2、因此凡是涉及空间任意两个向量的问题,平面向量中有因此凡是涉及空间任意两个向量的问题,平面向量中有关结论仍适用于它们。关结论仍适用于它们。平面向量概念加法减法数乘运算运算律定义 表示法 相等向量减法:三角形法则加法:三角形法则或平行四边形法则空间向量及其加减与数乘运算空间向量具有大小和方向的量数乘:ka,k为正数,负数,零bkakbak)()()(cbacbaabba加法交换律加法结合律数乘分配律abba加法交换律bkakbak)(数乘分配律加法:三角形法则或平行四边形法则减法:三角形法则数乘:ka,k为正数,负数,零加法结合律)()(cbacba共线向量(平行向量):表示空间向量的有向线段所在
3、的直线互相平行或重合,那么这些向量叫共线向量。ab向量 与 平行,记作:,规定:零向量与任意向量共线。ab共线向量定理:对空间任意两个向量 ,与 共线的充要条件是存在实数 ,使a)0(abbaab例1:已知平行六面体ABCD-AABCD-A1 1B B1 1C C1 1D D1 1,化简下列向量表达式,并标出化简结果的向量。(如图)ABCDA1B1C1D1G11121)4()(31)3()2()1(CCADABAAADABAAADABBCAB;)1(ACBCAB解:1111)2(ACCCACAAACAAADABM 始点相同的三个不共面向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点
4、的对角线所示向量ABMCGD)(21 )2()(21 )1(ACABAGBDBCAB练习1在空间四边形在空间四边形ABCDABCD中中,点点M M、G G分别是分别是BCBC、CDCD边的中点边的中点,化简化简ABMCGD)(21 )2()(21 )1(ACABAGBDBCABAGMGBMAB原式)1()(21 ACABMGBMAB(2)原式)(21 ACABMGBMMGMBMGBM 练习1在空间四边形在空间四边形ABCDABCD中中,点点M M、G G分别是分别是BCBC、CDCD边的中点边的中点,化简化简ABCDDCBA)()1(CCBCABxACADyABxAAAE)2(练习2在立方体在
5、立方体ACAC1 1中中,点点E E是面是面ACAC 的中心的中心,求下列各式中的求下列各式中的x,y.x,y.EABCDDCBA)()1(CCBCABxACADyABxAAAE)2(练习2E在立方体在立方体ACAC1 1中中,点点E E是面是面ACAC 的中心的中心,求下列各式中的求下列各式中的x,y.x,y.ABCDDCBAADyABxAAAE)2(练习2E在立方体在立方体ACAC1 1中中,点点E E是面是面ACAC 的中心的中心,求下列各式中的求下列各式中的x,y.x,y.平面向量概念加法减法数乘运算运算律定义 表示法 相等向量减法:三角形法则加法:三角形法则或平行四边形法则空间向量具
6、有大小和方向的量数乘:ka,k为正数,负数,零bkakbak)()()(cbacbaabba加法交换律加法结合律数乘分配律小结abba加法交换律bkakbak)(数乘分配律)()(cbacba加法结合律类比思想 数形结合思想数乘:ka,k为正数,负数,零作业.,CDc,b,a cAD b aBDACBCABABCD,来表示试用,中,空间四边形思考题:考虑空间三个向量共面的充要条件.ababOABb结论:空间任意两个向量都是共面向量,所以它们可用结论:空间任意两个向量都是共面向量,所以它们可用同一平面内的两条有向线段表示。同一平面内的两条有向线段表示。因此凡是涉及空间任意两个向量的问题,平面向量
7、中有因此凡是涉及空间任意两个向量的问题,平面向量中有关结论仍适用于它们。关结论仍适用于它们。思考:它们确定的平面是否唯一?思考:它们确定的平面是否唯一?思考:空间任意两个向量是否可能异面?思考:空间任意两个向量是否可能异面?1、在春节图片和视频中重温春节生活的欢快和喜悦,激发学生对传统节日、民俗文化的热爱之情。2、在送祝福的实践活动中对为社会服务的劳动者表达感谢之情3、了解春节的相关习俗,感受春节的热闹气氛。4、知道春节期间有很多人还在辛勤工作,学习用自己的方式表达对他人劳动的感谢之情。5经历三次认知冲突后意识到摆的摆动快慢与摆长有关。6经历实验和数据分析,理解同一个摆,摆长越长,摆动越慢,摆长越短,摆动越快。7用测量与比较的方法研究摆的摆动快慢规律。