人教A版必修五数学课件:3.3.2 简单的线性规划问题.pptx

上传人(卖家):金钥匙文档 文档编号:465499 上传时间:2020-04-14 格式:PPTX 页数:25 大小:1.03MB
下载 相关 举报
人教A版必修五数学课件:3.3.2 简单的线性规划问题.pptx_第1页
第1页 / 共25页
人教A版必修五数学课件:3.3.2 简单的线性规划问题.pptx_第2页
第2页 / 共25页
人教A版必修五数学课件:3.3.2 简单的线性规划问题.pptx_第3页
第3页 / 共25页
人教A版必修五数学课件:3.3.2 简单的线性规划问题.pptx_第4页
第4页 / 共25页
人教A版必修五数学课件:3.3.2 简单的线性规划问题.pptx_第5页
第5页 / 共25页
点击查看更多>>
资源描述

1、3.3.2 简单的线性规划问题 第三章 3.3 二元一次不等式(组)与简单的线性规划问题 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行 域、最优解等基本概念. 2.了解线性规划问题的图解法,并能应用它解决一些简单的实际 问题. 学习 目标 栏目 索引 知识梳理 自主学习 题型探究 重点突破 当堂检测 自查自纠 知识梳理 自主学习 知识点一 线性规划中的基本概念 答案 不等式(组) 名 称 意 义 约束条件 关于变量x,y的一次 线性约束条件 关于x,y的一次不等式(组) 目标函数 欲求最大值或最小值的关于变量x,y的函数解析式 线性目标函数 关于变量x,y的一次解析式 可行解 满

2、足 的解(x,y) 可行域 由所有 组成的集合 最优解 使目标函数取得 的可行解 线性规划问题 在线性约束条件下求线性目标函数的最大值或最小值问题 答案 线性约束条件 可行解 最大值或最小值 知识点二 线性规划问题 1.目标函数的最值 线性目标函数zaxby (b0)对应的斜截式直线方程是ya bx z b,在 y轴上的截距是 z b,当z变化时,方程表示一组 的直线. 当b0,截距最大时,z取得最大值,截距最小时,z取 值; 当b0时,要使zyax取得最大值的最优解不唯一,则a2; 当a0时,要使zyax取得最大值的最优解不唯一,则a1. 答案 D (2)若变量x, y满足约束条件 xy10

3、, x2y80, x0, 则z3xy的最小值为_. 解析答案 解析 由题意,作出约束条件组成的可行域如图所示,当目标函数z3x y,即y3xz过点(0,1)时z取最小值1. 1 题型二 非线性目标函数的最值问题 解析答案 例 2 设实数 x,y 满足约束条件 xy20, x2y40, 2y30, 求 (1)x2y2的最小值; (2)y x的最大值. 解析答案 反思与感悟 解 令 vy x,其几何意义是可行域 ABC 内任一点(x,y)与原点相连的直线 l 的斜率为 v, 即 vy0 x0.由图形可知, 当直线 l 经过可行域内点 C 时, v 最大, 由(1)知 C 1,3 2 , 所以 vm

4、ax3 2,所以 y x的最大值为 3 2. 解析答案 跟踪训练 2 已知 x,y 满足约束条件 x0, y0, xy1, 则(x3)2y2的最小值为 _. 题型三 线性规划的实际应用 例3 某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1 千克、B原料2千克;生产乙产品1桶需耗A原料2千克、B原料1千克.每 桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两 种产品的计划中,要求每天消耗A,B原料都不超过12千克.通过合理安 排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大 利润是多少? 解析答案 反思与感悟 解析答案 跟踪训练3 预算用2 000元

5、购买单价为50元的桌子和20元的椅子,希望使 桌子和椅子的总数尽可能的多,但椅子数不少于桌子数,且不多于桌子 数的1.5倍,问桌子、椅子各买多少才行? 返回 当堂检测 1 2 3 解析答案 1.若直线 y2x 上存在点(x, y)满足约束条件 xy30, x2y30, xm, 则实数 m 的最大值为( ) A.1 B.1 C.3 2 D.2 解析 如图, 当y2x经过且只经过xy30和xm的交点时,m取到最大值,此 时,即(m,2m)在直线xy30上,则m1. 答案 B 1 2 3 2.某公司招收男职员 x 名,女职员 y 名,x 和 y 需满足约束条件 5x11y22, 2x3y9, 2x1

6、1, xN*,yN*, 则 z10x10y 的最大值是( ) A.80 B.85 C.90 D.95 解析答案 1 2 3 3.已知实数 x,y 满足 y1, x1, xy1, 则 zx2y2的最小值为_. 解析 实数x,y满足的可行域如图中阴影部分所示, 则z的最小值为原点到直线AB的距离的平方, 解析答案 故 zmin 1 2 21 2. 1 2 1 2 3 课堂小结 1.用图解法解决线性或非线性规划问题的基本步骤: (1)在平面直角坐标系内作出可行域. (2)考虑目标函数的几何意义,将目标函数进行变形. (3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确 定最优解. (4)求最值:将最优解代入目标函数即可求出最大值或最小值. 2.作不等式组表示的可行域时,注意标出相应的直线方程,还要给可 行域的各顶点标上字母,平移直线时,要注意线性目标函数的斜率与 可行域中边界直线的斜率进行比较,确定最优解. 返回 3.在解决与线性规划相关的问题时,首先考虑目标函数的几何意义, 利用数形结合方法可迅速解决相关问题. 4.在实际应用问题中,有些最优解往往需要整数解(比如人数、车辆数 等)而直接根据约束条件得到的不一定是整数解,可以运用枚举法验证 求最优整数解,或者运用平移直线求最优整数解.最优整数解有时并非 只有一个,应具体情况具体分析.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 人教A版 >
版权提示 | 免责声明

1,本文(人教A版必修五数学课件:3.3.2 简单的线性规划问题.pptx)为本站会员(金钥匙文档)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|