数学文化十课件.ppt

上传人(卖家):晟晟文业 文档编号:4655220 上传时间:2022-12-29 格式:PPT 页数:42 大小:445.50KB
下载 相关 举报
数学文化十课件.ppt_第1页
第1页 / 共42页
数学文化十课件.ppt_第2页
第2页 / 共42页
数学文化十课件.ppt_第3页
第3页 / 共42页
数学文化十课件.ppt_第4页
第4页 / 共42页
数学文化十课件.ppt_第5页
第5页 / 共42页
点击查看更多>>
资源描述

1、11112开篇:开篇:v微积分,或者数学分析,是人类思维的伟大成微积分,或者数学分析,是人类思维的伟大成果之一。它外于自然科学与人文科学之间的地果之一。它外于自然科学与人文科学之间的地位,使它成为高等教育的一种特别有效的工具。位,使它成为高等教育的一种特别有效的工具。遗憾的是,微积分的数学方法有时流于机械,遗憾的是,微积分的数学方法有时流于机械,不能体现出这门学科乃是撼人心灵的智力奋斗不能体现出这门学科乃是撼人心灵的智力奋斗的结晶;这种奋斗已经经历了两千五百多年之的结晶;这种奋斗已经经历了两千五百多年之久,它深深根扎于人类活动的许多领域,并且,久,它深深根扎于人类活动的许多领域,并且,只要人们

2、认识自己和认识自然的努力一日不止,只要人们认识自己和认识自然的努力一日不止,这种奋斗就将继续不已。这种奋斗就将继续不已。R.R.柯朗柯朗23开篇:开篇:v课本的字斟句酌的叙述,未能表现出创造过程课本的字斟句酌的叙述,未能表现出创造过程中的斗争、挫折,以及在建立一个可观的结构中的斗争、挫折,以及在建立一个可观的结构之前,数学家所经历的艰苦漫长的道路。学生之前,数学家所经历的艰苦漫长的道路。学生一旦认识到这一点,他将不仅获得真知灼见,一旦认识到这一点,他将不仅获得真知灼见,还将获得顽强地追究他所攻问题的勇气,并且还将获得顽强地追究他所攻问题的勇气,并且不会因为他自己的工作并非完美无缺而感到沮不会因

3、为他自己的工作并非完美无缺而感到沮丧。实在说,叙述数学家如何跌交,如何在迷丧。实在说,叙述数学家如何跌交,如何在迷雾中摸索前进,并且如何零零碎碎地得到他们雾中摸索前进,并且如何零零碎碎地得到他们的成果,应能使搞研究工作的任一新手鼓起勇的成果,应能使搞研究工作的任一新手鼓起勇气。气。M.M.克莱因克莱因34开篇:开篇:学习微积分概念的发展将使我们受益良多。学习微积分概念的发展将使我们受益良多。微积分的创立是为了解决以下四类问题:微积分的创立是为了解决以下四类问题:q运动问题运动问题q切线问题切线问题q极值问题极值问题q求积问题求积问题45 12.112.1积分学的早期史:积分学的早期史:12.1

4、.112.1.1欧多克索斯的穷竭法欧多克索斯的穷竭法q古希腊巧辩家古希腊巧辩家安提丰安提丰(约公元前约公元前500500年年)提出圆提出圆面积由内接多边形逼近。面积由内接多边形逼近。q欧多克索斯欧多克索斯(Eudoxus(Eudoxus公元前公元前400-400-公元前公元前350350年年)假定量是无限可分的,并以下述命题为基础:假定量是无限可分的,并以下述命题为基础:612.1.112.1.1欧多克索斯的穷竭法欧多克索斯的穷竭法:v命题命题1 1如果从任一量中减去不小于它的一如果从任一量中减去不小于它的一半的部分,从余量中再减去不小于它的一半的半的部分,从余量中再减去不小于它的一半的另一部

5、分,如此继续下去,则最后留下一个小另一部分,如此继续下去,则最后留下一个小于任何给定的同类量的量。于任何给定的同类量的量。v命题命题2 2圆的内接相似正多边形面积之比等圆的内接相似正多边形面积之比等于圆的直径的平方之比。于圆的直径的平方之比。v命题命题3 3圆与圆的面积之比等于其直径平方圆与圆的面积之比等于其直径平方之比。之比。712.1.112.1.1欧多克索斯的穷竭法欧多克索斯的穷竭法:欧多克索斯还证明了棱锥体积是同底同高的棱欧多克索斯还证明了棱锥体积是同底同高的棱柱体积的三分之一柱体积的三分之一,以及圆锥体积是同底同高以及圆锥体积是同底同高的圆柱体积的三分之一。但他没有明确的极限的圆柱体

6、积的三分之一。但他没有明确的极限思想。思想。812.1.212.1.2阿基米德的平衡法阿基米德的平衡法:v阿基米德阿基米德(Archimedes(Archimedes,约,约公元前公元前287287212)212)古希腊物古希腊物理学家、数学家,静力学和理学家、数学家,静力学和流体静力学的奠基人。流体静力学的奠基人。除了牛顿和爱因斯坦,除了牛顿和爱因斯坦,再没有一个人象阿基米德那再没有一个人象阿基米德那样为人类的进步做出过这样样为人类的进步做出过这样大的贡献。即使牛顿和爱因大的贡献。即使牛顿和爱因斯坦也都曾从他身上汲取过斯坦也都曾从他身上汲取过智慧和灵感。他是智慧和灵感。他是“理论天理论天才与

7、实验天才合于一人的理才与实验天才合于一人的理想化身想化身”,文艺复兴时期的,文艺复兴时期的达芬奇和伽利略等人都拿他达芬奇和伽利略等人都拿他来做自己的楷模。来做自己的楷模。9在阿基米德在阿基米德论球和柱体论球和柱体一书中,第一次出一书中,第一次出现了球和球冠的表面积,球和球缺的体积的正现了球和球冠的表面积,球和球缺的体积的正确公式。确公式。v命题圆面积是圆周长与其半径之积的一命题圆面积是圆周长与其半径之积的一半半v命题半径为命题半径为r r的球的体积是的球的体积是12.1.212.1.2阿基米德的平衡法阿基米德的平衡法:343vr 10TNSABxr xr22()2rxrxrx图图12-2112

8、2222*222xr rrxxxxxxxx xxxx 3 3利利用用杠杠杆杆平平衡衡原原理理证证明明球球体体积积=4 4/3 3 r r把把球球的的直直径径放放在在 轴轴上上,同同时时用用的的矩矩形形和和底底和和高高都都为为 的的三三角角形形绕绕 轴轴旋旋转转,得得到到一一个个圆圆柱柱体体和和一一个个圆圆锥锥体体。然然后后从从这这三三个个立立体体上上切切下下与与N N的的距距离离为为,厚厚为为 的的竖竖立立的的薄薄片片,这这些些薄薄片片的的体体积积近近似似为为球球体体:(r r-)圆圆柱柱体体:r r圆圆锥锥体体:取取出出球球体体和和圆圆锥锥体体的的薄薄片片,把把它它们们的的质质心心吊吊在在点

9、点T T(T TN N=2 2r r)这这两两个个薄薄片片绕绕N N的的合合成成力力矩矩为为(r r-)23243x xxx 2 22 2r r=4 4r r恰恰好好为为圆圆柱柱体体割割出出的的薄薄片片处处于于原原来来位位置置时时绕绕N N的的力力矩矩的的四四倍倍。把把所所有有这这样样割割出出的的薄薄片片绕绕N N的的力力矩矩加加在在一一起起,得得到到2 2r r(球球的的体体积积+圆圆锥锥的的体体积积)=4 4r r(圆圆柱柱的的体体积积)即即 2 2r r(球球的的体体积积+8 8 r r/3 3)=4 4r r*2 2r r*r r=8 8 r r即即得得:球球的的体体积积=4 4 r

10、r/3 3命题命题2 2的证明的证明 12命题命题2 2的证明的证明 22222*222xr rrxxxxxxxxxxxx 3 3利利用用杠杠杆杆平平衡衡原原理理证证明明球球体体积积=4 4/3 3 r r把把球球的的直直径径放放在在 轴轴上上,同同时时用用的的矩矩形形和和底底和和高高都都为为 的的三三角角形形绕绕 轴轴旋旋转转,得得到到一一个个圆圆柱柱体体和和一一个个圆圆锥锥体体。然然后后从从这这三三个个立立体体上上切切下下与与N N的的距距离离为为,厚厚为为的的竖竖立立的的薄薄片片,这这些些薄薄片片的的体体积积近近似似为为球球体体:(r r-)圆圆柱柱体体:r r圆圆锥锥体体:取取出出球球

11、体体和和圆圆锥锥体体的的薄薄片片,把把它它们们的的质质心心吊吊在在点点T T(T TN N=2 2r r)这这两两个个薄薄片片绕绕N N的的合合成成力力矩矩为为(r r-)23243xxxx 2 22 2r r=4 4r r恰恰好好为为圆圆柱柱体体割割出出的的薄薄片片处处于于原原来来位位置置时时绕绕N N的的力力矩矩的的四四倍倍。把把所所有有这这样样割割出出的的薄薄片片绕绕N N的的力力矩矩加加在在一一起起,得得到到2 2r r(球球的的体体积积+圆圆锥锥的的体体积积)=4 4r r(圆圆柱柱的的体体积积)即即 2 2r r(球球的的体体积积+8 8 r r/3 3)=4 4r r*2 2r

12、r*r r=8 8 r r即即得得:球球的的体体积积=4 4 r r/3 313第一个推广阿基米德方法的是德国的天文学家第一个推广阿基米德方法的是德国的天文学家和数学家刻卜勒(和数学家刻卜勒(Johann Johann Kepler1571-1630)Kepler1571-1630)他他在在16151615年写了年写了酒桶的新立体几何酒桶的新立体几何,书中包,书中包含了用无穷小元素法求面积和求体积的许多问含了用无穷小元素法求面积和求体积的许多问题,其中有题,其中有8787种新的旋转体的体积。刻卜勒工种新的旋转体的体积。刻卜勒工作的直接继承者是卡瓦列里(作的直接继承者是卡瓦列里(B.Cavali

13、eri1598-B.Cavalieri1598-1647),1647),他在他在16351635年发表了专著年发表了专著不可分素几何不可分素几何学学12.1.312.1.3不可分素方法不可分素方法:14 卡瓦列里说:卡瓦列里说:“要决定平面图形的大小可要决定平面图形的大小可以用一系列平行线;我们设想在这些图形上画以用一系列平行线;我们设想在这些图形上画了无穷多的平行线了无穷多的平行线”。他用同样的方式处理了。他用同样的方式处理了立体图形,用的不是一系列平行线,而是一系立体图形,用的不是一系列平行线,而是一系列平行平面。这些直线和平面就是不可分素。列平行平面。这些直线和平面就是不可分素。卡瓦列里

14、用不可分素的方法解决了整数幂卡瓦列里用不可分素的方法解决了整数幂的积分问题。也即,他算出了下面的积分:的积分问题。也即,他算出了下面的积分:12.1.312.1.3不可分素方法不可分素方法:1011ammx dxam15例例求椭圆的体积。求椭圆的体积。12.1.312.1.3不可分素方法不可分素方法:222xya22221xyab22222/yaxbyaxab ab ab ab ab a aab 从图形中可得对于圆有 对于椭圆有 即椭圆和圆的纵坐标之比是。所以椭圆和圆的响应的弦之比也是。因此,根据卡瓦列里原理椭圆和圆的面积之比也是。椭圆面积=圆面积=()这是刻卜勒求椭圆面积的方法。16例例求半

15、径为求半径为r r的球的体积。的球的体积。12.1.312.1.3不可分素方法不可分素方法:LLr1r2ROOOOBA22)/3)4/3.rL333两个截面面积都是(,根据卡瓦列里原理,两个立体体积相等。有圆体积=2(圆柱体积-圆锥体积)=2(rrr1712.1.412.1.4刘徽的贡献刘徽的贡献:刘徽(约刘徽(约225-295),中国数学),中国数学史上伟大的数学家,史上伟大的数学家,活动于魏晋年间。活动于魏晋年间。中国古典数学理论中国古典数学理论的奠基者之一。他的奠基者之一。他的杰作的杰作九章算术九章算术注注和和海岛算经海岛算经是我国最可宝贵的是我国最可宝贵的数学遗产。数学遗产。1812.

16、1.412.1.4刘徽的贡献刘徽的贡献:刘徽对积分学的贡献主要有两点:刘徽对积分学的贡献主要有两点:1 1)他创造性地运用极限思想证明了求他创造性地运用极限思想证明了求圆面积公式和给出了计算圆周率的方法圆面积公式和给出了计算圆周率的方法。他用割圆术,从直径为他用割圆术,从直径为2 2尺的圆内接正尺的圆内接正六边形开始割圆,依次得正六边形开始割圆,依次得正1212边形、正边形、正2424边形边形,割得越细,正多边形面积,割得越细,正多边形面积和圆面积之差越小,用他的原话说是和圆面积之差越小,用他的原话说是“割之弥细,所失弥少,割之又割,以割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而

17、无所失至于不可割,则与圆周合体而无所失矣。矣。”他得到的圆周率为他得到的圆周率为3927/1250=3.14163927/1250=3.1416。他提出的计算圆周。他提出的计算圆周率的科学方法,奠定了此后千余年中国率的科学方法,奠定了此后千余年中国圆周率计算在世界上的领先地位圆周率计算在世界上的领先地位。1912.1.412.1.4刘徽的贡献刘徽的贡献:2 2)关于解决体积问题的设想。关于解决体积问题的设想。他指出了他指出了九章算术九章算术内求球体积公内求球体积公式的错误。他在正方体内作了两个相式的错误。他在正方体内作了两个相互垂直的圆柱,并称两圆柱公共部分互垂直的圆柱,并称两圆柱公共部分为为

18、“牟合方盖牟合方盖”,他虽未完成球体积,他虽未完成球体积的推导,但他正确的指出,的推导,但他正确的指出,“牟合方牟合方盖盖”与其内切球体积之比为与其内切球体积之比为4 4:,在,在算法理论和数学思想方面都给后人以算法理论和数学思想方面都给后人以很大的启发。很大的启发。2012.1.512.1.5祖祖暅暅原理原理:祖祖暅暅,字景烁,南北朝时南朝著名,字景烁,南北朝时南朝著名数学家和天文学家。著名数学家祖数学家和天文学家。著名数学家祖冲之之子。冲之之子。缀术缀术就是他们父子就是他们父子共同完成的数学杰作。共同完成的数学杰作。在推导在推导“牟合方盖牟合方盖”体积的过程中,体积的过程中,祖祖暅暅提出了

19、提出了“幂势既同,则积不容幂势既同,则积不容异异”的原理,后来被称为的原理,后来被称为“祖祖暅暅原原理理”。用现代语言来说即用现代语言来说即“若两立若两立体在等高处具有相同的截面面积,体在等高处具有相同的截面面积,则这两立方体的体积相等则这两立方体的体积相等”。2112.1.512.1.5祖祖暅暅原理原理:“祖祖暅暅原理原理”也即卡瓦列里原理,也即卡瓦列里原理,但比卡瓦列里早了一千年。根据但比卡瓦列里早了一千年。根据“祖祖暅暅原理原理”可将可将“牟合方盖牟合方盖”的的体积化成一个正方体和一个四棱锥体积化成一个正方体和一个四棱锥的体积之差。由此求出的体积之差。由此求出“牟合方盖牟合方盖”的体积等

20、于的体积等于 。并由此得到求。并由此得到求的球的的球的 体积体积 。3/32d332*3416Vdd22图图12-8祖祖暅暅原理动画演示原理动画演示23 12.212.2微分学的早期史:微分学的早期史:积分学的历史比较长,相对来讲微分学要积分学的历史比较长,相对来讲微分学要短一些。短一些。在在1717世纪,数学家伽利略和刻卜勒的一系世纪,数学家伽利略和刻卜勒的一系列发现,导致数学从古典数学向现代数学列发现,导致数学从古典数学向现代数学的转折。的转折。v伽利略发现了许多有关物体在地球引力伽利略发现了许多有关物体在地球引力场中运动的基本事实。场中运动的基本事实。v刻卜勒在刻卜勒在16911691年

21、前后归纳出著名的行星年前后归纳出著名的行星运动三定律。运动三定律。微分学主要来源于两个问题的研究:一个微分学主要来源于两个问题的研究:一个是作曲线切线问题,一个是求函数的最大是作曲线切线问题,一个是求函数的最大最小值问题。最小值问题。2412.2.112.2.1费马以前的工作费马以前的工作q从一般意义上讨论曲线的切线问题由从一般意义上讨论曲线的切线问题由法国数学罗贝瓦尔(法国数学罗贝瓦尔(G.P.de RobervalG.P.de Roberval 1602-16751602-1675)他认为,曲线是由运动的点生成,点他认为,曲线是由运动的点生成,点的运动又可以分解成两个已知的运动。的运动又可

22、以分解成两个已知的运动。两个已知的运动的速度向量给出曲线两个已知的运动的速度向量给出曲线的切线。如:抛物线的切线。(离开的切线。如:抛物线的切线。(离开准线和离开焦点运动的和力)准线和离开焦点运动的和力)q意大利物理学家和数学家托里拆利意大利物理学家和数学家托里拆利(Torricelli 1608-1647)(Torricelli 1608-1647)也持有这种观点。也持有这种观点。2512.2.212.2.2费马求极大极小值的方法费马求极大极小值的方法q属于微分方法的第一个真正值得注意的属于微分方法的第一个真正值得注意的先驱工作是先驱工作是16291629年年费马费马给出的,他的方给出的,他

23、的方法如下:法如下:设设f(x)f(x)在在x x处有极大值或极小值,并设处有极大值或极小值,并设e e是是一个很小的量,那么一个很小的量,那么f(x+e)f(x+e)的值几乎等于的值几乎等于f(x)f(x)的值。因此我们可以先假定它们相等的值。因此我们可以先假定它们相等f(x+e)=f(x)f(x+e)=f(x),然后让,然后让e e等于等于0 0,等式仍相等,等式仍相等,消去消去e e,得一方程,这个方程的根就是使,得一方程,这个方程的根就是使f(x)f(x)取极大值或极小值的取极大值或极小值的x.x.例:将一个常量例:将一个常量MM分成两部分,使其乘积分成两部分,使其乘积最大。最大。26

24、12.2.312.2.3费马求切线的方法费马求切线的方法费马还创造了求切线的方法,他的方法费马还创造了求切线的方法,他的方法是先求该点的次切线,次切线指的是是先求该点的次切线,次切线指的是x x轴上两点间的一个线段轴上两点间的一个线段PAPA。oPAB(,)x yekCDtxeEy图图12-102712.2.312.2.3费马求切线的方法费马求切线的方法K/e=y/t k+y=y(1+e/t)CK/e=y/t k+y=y(1+e/t)C点坐标为(点坐标为(x+e,y(1+e/t)x+e,y(1+e/t)费马暂时认为这一点也在曲线上,于是有:费马暂时认为这一点也在曲线上,于是有:f f(x+e,

25、y(1+e/t)=0 x+e,y(1+e/t)=0。然后解此方程,另。然后解此方程,另e=0,e=0,就就可解出可解出t t。oPAB(,)x yekCDtxeEy图图12-1022222(1)()2222211/2eeyxyxeyyxxeetteyyyyxeexexttttxyxt 例:当时。2812.2.412.2.4费马在积分学方面的贡献费马在积分学方面的贡献q费马给出了卡瓦列里法则的几种证明。在费马给出了卡瓦列里法则的几种证明。在16441644年前,他也发现了关于分数幂的年前,他也发现了关于分数幂的“抛物线抛物线”的求面积,体积及其重心的方法。的求面积,体积及其重心的方法。在费马求面

26、积过程中,看到了定积分概念与运在费马求面积过程中,看到了定积分概念与运算的大部分的主要内容。他把曲线的面积分割算的大部分的主要内容。他把曲线的面积分割为小的面积元素,利用矩形和曲线的解析方程,为小的面积元素,利用矩形和曲线的解析方程,求出这些和的近似值,以及在元素个数无限增求出这些和的近似值,以及在元素个数无限增加,每个元素面积无限小时,将表达式表示为加,每个元素面积无限小时,将表达式表示为和式极限的方式。和式极限的方式。费马的贡献在于他第一次采用了相当于今天的定费马的贡献在于他第一次采用了相当于今天的定积分的方法,但是费马没有发现微分学和定积积分的方法,但是费马没有发现微分学和定积分的联系。

27、分的联系。mnnma yb x2912.2.512.2.5巴罗的贡献巴罗的贡献巴罗(巴罗(1630-1677),),1630年年生于伦敦,毕业于生于伦敦,毕业于剑桥大学。他在物剑桥大学。他在物理、数学、天文和理、数学、天文和神学方面都有造诣。神学方面都有造诣。1673年被任命为剑年被任命为剑桥三一学院院长。桥三一学院院长。主要著作是主要著作是光学光学和几何学讲义和几何学讲义,1677年逝世于剑桥。年逝世于剑桥。OT(,)x yxyMNQeaP巴罗的方法巴罗的方法R3012.2.512.2.5巴罗的贡献巴罗的贡献求求f(x,y)=0f(x,y)=0在点在点P(x,y)P(x,y)处的切线,只要确

28、处的切线,只要确定定T T的位置。作三角形的位置。作三角形PQR,PQR,当当e e很小时,三很小时,三角形角形PQRPQR相似于三角形相似于三角形PTMPTM。从而。从而 TM/PM=e/a TM=eTM/PM=e/a TM=e*y/ay/aOT=OM-TM=OM-PMOT=OM-TM=OM-PM*QR/RP=x-eQR/RP=x-e*y/ay/aOT(,)x yxyMNQeaP22222()2222211/2yxyaxeyaxxeeaaaxeexexeeeyOTxyxaxyxOT 例:当时。R R3112.2.512.2.5巴罗的贡献巴罗的贡献3333333223322333332232(

29、),)()33330 xyrxyxe yaxeyarxx exeeyy ayaareaxyraxeyeyOTxyxax 例:求曲线在点,处的切线。把代入方程,得到 (即 让 和 的高次幂都为,并利用,上式化为 即可求出切线。3212.2.512.2.5巴罗的贡献巴罗的贡献巴罗求切线的方法非常接近我们在微巴罗求切线的方法非常接近我们在微积分中所用的方法,字母积分中所用的方法,字母e e和和a a相当于相当于我们的符号我们的符号dxdx和和dydy,而费马只用了一,而费马只用了一个无穷小量个无穷小量e e。而且,巴罗的方法非。而且,巴罗的方法非常适合隐函数。常适合隐函数。但是,巴罗的方法没有极限的

30、概念,但是,巴罗的方法没有极限的概念,逻辑上也不够严密。巴罗在微分和积逻辑上也不够严密。巴罗在微分和积分上都取得了进展,应该说,他已经分上都取得了进展,应该说,他已经走到了微积分基本定理的大门口。走到了微积分基本定理的大门口。3312.2.612.2.6微积分前期史小结微积分前期史小结 在前人一系列工作的基础上,在积分学和微在前人一系列工作的基础上,在积分学和微分学中都得到了大量的结果。如在积分学中关于分学中都得到了大量的结果。如在积分学中关于求面积、体积、弧长、曲面面积及质心定位的结求面积、体积、弧长、曲面面积及质心定位的结果;在微分学中,费马给出了一个统一的无穷小果;在微分学中,费马给出了

31、一个统一的无穷小方法,用以解决求最大、最小值问题和作曲线的方法,用以解决求最大、最小值问题和作曲线的切线问题。切线问题。巴罗在这两类问题中间搭成了一座桥梁。巴罗在这两类问题中间搭成了一座桥梁。莱布尼茨说:在这样的科学成就之后,所缺莱布尼茨说:在这样的科学成就之后,所缺少的只是引出问题的迷宫的一条线,即依照代数少的只是引出问题的迷宫的一条线,即依照代数样式的解析计算法。样式的解析计算法。创建微积分还需要多少事情要做呢?创建微积分还需要多少事情要做呢?1 1)需要以一般形式建立新计算法的基本概念)需要以一般形式建立新计算法的基本概念及其相互联系,创立一套一般的符号体系,建立及其相互联系,创立一套一

32、般的符号体系,建立计算的正规程序和算法。计算的正规程序和算法。2 2)为这门学科建立逻辑上一致的、严格的基)为这门学科建立逻辑上一致的、严格的基础。础。34 12.312.3牛顿和莱布尼茨牛顿和莱布尼茨 1717世纪后期出现了一个崭新的数学分支世纪后期出现了一个崭新的数学分支数学数学分析或微积分,它在数学领域中占据着主导分析或微积分,它在数学领域中占据着主导地位。这种新数学成功的运用了无限过程的地位。这种新数学成功的运用了无限过程的运算,其中微分和积分这两个过程则构成了运算,其中微分和积分这两个过程则构成了微分学和积分学的核心。微分学和积分学的核心。如果把数学看做一棵大树,那么初等数学就如果把

33、数学看做一棵大树,那么初等数学就是它的根,而微积分是它的树干,它的树杈是它的根,而微积分是它的树干,它的树杈则是众多的分支。则是众多的分支。微积分的系统发展通常归功于两位伟大的科微积分的系统发展通常归功于两位伟大的科学先驱牛顿学先驱牛顿莱布尼茨。莱布尼茨。35伊萨克伊萨克.牛顿牛顿(Isac Newton 1643-1727),1643年年1月月4日生于英格兰的乌日生于英格兰的乌兰索普镇,兰索普镇,1660年年进入剑桥大学学习,进入剑桥大学学习,1665年毕业于该校年毕业于该校并获得学士学位,并获得学士学位,1668年获得硕士学年获得硕士学位,位,1669年继承了年继承了巴罗的职位。巴罗的职位

34、。12.312.3牛顿和莱布尼茨牛顿和莱布尼茨 3612.312.3牛顿和莱布尼茨牛顿和莱布尼茨 v16871687年,牛顿的主要著作年,牛顿的主要著作自然哲学的自然哲学的数学原理数学原理出版,在原理中第一次有了地出版,在原理中第一次有了地球和天体主要运动现象的完整的动力学体球和天体主要运动现象的完整的动力学体系和完整的数学公式。系和完整的数学公式。v1665-16661665-1666年写出了年写出了曲线求积论曲线求积论。16701670年写出了年写出了流数术和无穷级数方法及流数术和无穷级数方法及其对几何曲线的应用其对几何曲线的应用。牛顿在这两部著作中和在牛顿同时代人莱牛顿在这两部著作中和在

35、牛顿同时代人莱布尼茨的著作中,建立和完成无穷小量的布尼茨的著作中,建立和完成无穷小量的经典分析,也就是建立和完成了微积分学。经典分析,也就是建立和完成了微积分学。3712.312.3牛顿和莱布尼茨牛顿和莱布尼茨 牛顿是人类历史上最伟大的数学家之一。牛顿是人类历史上最伟大的数学家之一。q像莱布尼茨这样作出了杰出贡献的人也像莱布尼茨这样作出了杰出贡献的人也评价道:评价道:“在从世界开始到牛顿生活的年在从世界开始到牛顿生活的年代的全部数学中,牛顿的工作超过一半代的全部数学中,牛顿的工作超过一半”。q拉格朗日称他是历史上最有才能的人,拉格朗日称他是历史上最有才能的人,也是最幸运的人,因为宇宙体系只能被

36、发也是最幸运的人,因为宇宙体系只能被发现一次。现一次。q英国著名诗人波普这样来描述这位伟大英国著名诗人波普这样来描述这位伟大的数学家的数学家“自然和自然的规律自然和自然的规律,沉浸在一片沉浸在一片混沌之中,上帝说,生出牛顿,一切都变混沌之中,上帝说,生出牛顿,一切都变得明朗。得明朗。”3812.312.3牛顿和莱布尼茨牛顿和莱布尼茨 牛顿本人却很谦逊牛顿本人却很谦逊,他说:他说:我不知道在别人看来,我是什么样的人;我不知道在别人看来,我是什么样的人;但在我自己看来,我不过就象是一个在但在我自己看来,我不过就象是一个在海滨玩耍的小孩,为不时发现比寻常更海滨玩耍的小孩,为不时发现比寻常更为光滑的一

37、块卵石或比寻常更为美丽的为光滑的一块卵石或比寻常更为美丽的一片贝壳而沾沾自喜,而对于展现在我一片贝壳而沾沾自喜,而对于展现在我面前的浩瀚的真理的海洋,却全然没有面前的浩瀚的真理的海洋,却全然没有发现。发现。牛顿牛顿3912.312.3牛顿和莱布尼茨牛顿和莱布尼茨 戈特弗里德戈特弗里德?威廉威廉?莱布尼茨莱布尼茨(Gottfriend(Gottfriend Wilhelm Wilhelm Leibniz)Leibniz),(,()16461646年年6 6月月2121日出生日出生于德国莱比锡,父亲是莱比于德国莱比锡,父亲是莱比锡大学的道德哲学教授,莱锡大学的道德哲学教授,莱布尼茨布尼茨1515岁

38、进入莱比锡大学岁进入莱比锡大学学习法律,在答辩了逻辑的学习法律,在答辩了逻辑的论文之后得到哲学学位。论文之后得到哲学学位。19661966年写了论文年写了论文论组合的论组合的艺术艺术完成了他在阿尔特道完成了他在阿尔特道夫大学的博士论文。夫大学的博士论文。1670-1670-16711671年写了第一篇力学论文,年写了第一篇力学论文,16721672年出差到巴黎接触到数年出差到巴黎接触到数学和自然科学家激起了他对学和自然科学家激起了他对数学的兴趣。数学的兴趣。4012.312.3牛顿和莱布尼茨牛顿和莱布尼茨 v莱布尼茨在研究了巴罗的著作后意识到微分莱布尼茨在研究了巴罗的著作后意识到微分和积分的互

39、逆关系。和积分的互逆关系。v莱布尼茨从莱布尼茨从16841684年起发表微积分论文,在年起发表微积分论文,在16841684年的年的博学学报博学学报上发表了一篇题为上发表了一篇题为一种求极大值与极小值和切线的新方法,一种求极大值与极小值和切线的新方法,它也适用于分式和无理量,以及这种新方法它也适用于分式和无理量,以及这种新方法的奇妙的计算的奇妙的计算。这是历史上最早公开发表。这是历史上最早公开发表的关于微分学的文献。的关于微分学的文献。v16751675年,莱布尼茨引入了现代的积分符号,年,莱布尼茨引入了现代的积分符号,用拉丁字用拉丁字summa(summa(求和求和 )的第一个字母的第一个字

40、母s s拉长了拉长了表示积分,他是数学史上最伟大的符号学者。表示积分,他是数学史上最伟大的符号学者。v莱布尼茨还是一位中西文化交流的倡导者。莱布尼茨还是一位中西文化交流的倡导者。4112.312.3牛顿和莱布尼茨牛顿和莱布尼茨 综上所述,二人研究微积分学的基础都综上所述,二人研究微积分学的基础都达到了同一目的,但各自的方法不同。达到了同一目的,但各自的方法不同。牛顿主要是从力学的概念出发,而莱布牛顿主要是从力学的概念出发,而莱布尼茨作为哲学家和几何学家对方法本身尼茨作为哲学家和几何学家对方法本身感兴趣。牛顿接近最后的结论比莱布尼感兴趣。牛顿接近最后的结论比莱布尼茨早一些,而莱布尼茨发表自己的结论茨早一些,而莱布尼茨发表自己的结论早于牛顿。早于牛顿。42 12.412.4光辉的诞生光辉的诞生微积分的诞生具有划时代的意义,是数微积分的诞生具有划时代的意义,是数学史上的分水岭和转折点。学史上的分水岭和转折点。关于微积分的地位,恩格斯这样评价:关于微积分的地位,恩格斯这样评价:“在一切理论成就中,未必再有什么象在一切理论成就中,未必再有什么象1717世纪下半叶微积分的发现那样被看作世纪下半叶微积分的发现那样被看作人类精神的最高胜利了。如果在某个地人类精神的最高胜利了。如果在某个地方我们看到人类精神的纯粹的和唯一的方我们看到人类精神的纯粹的和唯一的功绩那正是在这里。功绩那正是在这里。”

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(数学文化十课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|