四川省达州市2023届高三第一次诊断性测试理科数学试卷+答案.pdf

上传人(卖家):副主任 文档编号:4666839 上传时间:2022-12-30 格式:PDF 页数:8 大小:620.93KB
下载 相关 举报
四川省达州市2023届高三第一次诊断性测试理科数学试卷+答案.pdf_第1页
第1页 / 共8页
四川省达州市2023届高三第一次诊断性测试理科数学试卷+答案.pdf_第2页
第2页 / 共8页
亲,该文档总共8页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、一诊数学(理)试卷第 1 页(共 4 页)达州市普通高中 2023 届第一次诊断性测试数学试题(理科)注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑如需改动,用橡皮擦干净后,再选涂其它答案标号回答非选择题时,将答案写在答题卡上,写在本试卷无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共 12 小题,每小题 5 分,共 60 分在每小题给出的四个选项中,只有一项是符合题目要求的1已知集合|Axx1,|1Bx x,则AB A0 1),B(0 1),C(1),D(1,2复数z满足12iz

2、,则z A12B12C1i2D1i23已知向量a,b,满足ab,(1 2),a=,则()a b aA0B2C5D54四川省将从 2022 年秋季入学的高一年级学生开始实行高考综合改革,高考采用“3+1+2”模式,其中“1”为首选科目,即物理与历史二选一某校为了解学生的首选意愿,对部分高一学生进行了抽样调查,制作出如下两个等高条形图,根据条形图信息,下列结论正确的是A样本中选择物理意愿的男生人数少于选择历史意愿的女生人数B样本中女生选择历史意愿的人数多于男生选择历史意愿的人数C样本中选择物理学科的人数较多D样本中男生人数少于女生人数5 三棱锥PABC的底面ABC为直角三角形,ABC的外接圆为圆O

3、,PQ 底面ABC,Q在圆O上或内部,现将三棱锥的底面ABC放置在水平面上,则三棱锥PABC的俯视图不可能是ABCD一诊数学(理)试卷第 2 页(共 4 页)6“0ab”是“eb aab”的A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件7把一个三边均为有理数的直角三角形面积的数值称为同余数,如果正整数n为同余数,则称n为整同余数2021 年 11 月 3 日,2020 年度国家科学奖励大会在人民大会堂隆重召开,中国科学院研究员田刚以“同余数问题与L函数的算术”项目荣获 2020 年度国家自然科学奖二等奖,在同余数这个具有千年历史数学中最重要的古老问题上取得突破性进展在AB

4、C中,2C,ABC绕AC旋转一周,所成几何体的侧面积和体积的数值之比为5:4,若ABC的面积n为整同余数,则n的值可以为A5B6C8D128将函数1()sin()23f xx(0)图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,得到函数()g x的图象,直线l与曲线()yg x仅交于11()A xy,22()B xy,()66Pg,三点,6为1x,2x的等差中项,则的最小值为A8B6C4D29点F为双曲线22221xyab(0 0)ab,的一个焦点,过F作双曲线的一条渐近线的平行线交双曲线于点A,O为原点,|OAb,则双曲线的离心率为A2B2 3C2 2D310.曲线()()ln()f x

5、xmx mR在点(1(1)f,处的切线平分圆22(2)(1)5xy,则A()yf x有两个零点B()yf x有极大值C()yf x在(0 ),上为增函数D当1x 时,()0f x 11.在棱长为2的正方体1111ABCDABC D中,E,F分别为AB,BC的中点,则A异面直线1DD与1B F所成角的余弦值为55B点P为正方形1111ABC D内一点,当DP平面1B EF时,DP的最小值为3 22C过点1D,E,F的平面截正方体1111ABCDABC D所得的截面周长为3 22 5D当三棱锥1BBEF的所有顶点都在球O的表面上时,球O的表面积为1212.函数()f x满足(2)()2fxf x,

6、令()(1)1g xf x,对任意的0 x,都有()()1xgxg xx,若12()10099!g,则(0)fA1B3C1D199!一诊数学(理)试卷第 3 页(共 4 页)二、填空题:本题共 4 小题,每小题 5 分,共 20 分1381()xx展开式中的常数项为(用数字作答)14定义 acadbcbd,现从集合|10 xxN中随机取两个不同的元素m,n,则满足032nm 的概率为15已知正方形ABCD边长为2,M,N两点分别为边BC,CD上动点,45MAN,则CMN的周长为16斜率为1的直线l与曲线2:2C ypx(00)py,交于11()A xy,22()B xy,两点,F为22ypx的

7、焦点,212xx,3AFBF,点00102()()M xyxxx,为曲线C上一点,当MAB的面积取最大值时,MF 三、解答题:共 70 分解答应写出文字说明、证明过程或演算步骤第 1721 题为必考题,每个试题考生都必须作答第 22、23 题为选考题,考生根据要求作答(一)必考题:共 60 分17(12 分)党的十九大提出实施乡村振兴战略以来,农民收入大幅提升,2022 年 9 月 23 日某市举办中国农民丰收节庆祝活动,粮食总产量有望连续十年全省第一 据统计该市 2017 年至 2021年农村居民人均可支配收入的数据如下表:年份20172018201920202021年份代码x12345人均

8、可支配收入y(单位:万元)1.301.401.621.681.80(1)根据上表统计数据,计算y与x的相关系数r,并判断y与x是否具有较高的线性相关程度(若0.30|0.75r,则线性相关程度一般,若|0.75r 则线性相关程度较高,r精确到0.01);(2)市五届人大二次会议政府工作报告提出,2022 年农村居民人均可支配收入力争不低于1.98万元,求该市 2022 年农村居民人均可支配收入相对 2021 年增长率最小值(用百分比表示)参考公式和数据:相关系数12211()()()()niiinniiiixxyyrxxyy,51()()1.28iiixxyy,521()0.17iiyy,1.

9、71.3.18.(12 分)已知正项等比数列 na前n项和为nS,342aa,当2n时,12nnSSm,mR(1)求 na的通项公式;(2)求数列12nnnmS S的前n项和nT一诊数学(理)试卷第 4 页(共 4 页)ABCDEFP19(12 分)如图,四棱锥PABCD的底面ABCD是梯形,ADBC,ABBC.E为AD延长线上一点,PE 平面ABCD,2PEAD,tan2PDA.F是PB中点(1)证明:EFPA;(2)若22BCAD,三棱锥EPDC的体积为13,求二面角FDEC的余弦值20(12 分)已知直线l:(0)ykx k交椭圆C:2212xy于A,B两点,1F,2F为C的左、右焦点,

10、1F关于直线l的对称点在C上(1)求k的值;(2)过2F斜率为1k的直线交线段AB于点D,交C于点M,N,求22|F DMN的最小值21(12 分)已知函数()elnmxf xxx(mR)(1)若1x 是函数()f x的极值点,求()f x的单调区间;(2)证明:当12m 时,曲线()yf x上的所有点均在抛物线2xy的内部(二)选考题:共 10 分请考生在第 22、23 题中任选一题作答,如果多做,则按所做的第一题计分22选修 4-4:坐标系与参数方程(10 分)在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为22 cos2 sin20,直线l

11、的参数方程为2cos()2sinxttyt,为参数(1)写出曲线C的直角坐标方程;(2)设直线l与曲线C交于A,B两点,定点(2 2)P,求PAPB的最小值23选修 4-5:不等式选讲(10 分)设函数12)(xxf(1)若()()f xf xm的解集为|0 x x,求实数m的值;(2)若0ab,且()()f af b,求411ab的最小值理科数学答案 第 1页(共 4 页)达州市普通高中 2023 届第一次诊断性测试达州市普通高中 2023 届第一次诊断性测试理科数学参考答案理科数学参考答案一、选择题:一、选择题:1.A2.C3.D4.C5.D6.A7.B8.C9.D10.D11.B12.A

12、二、填空题:本题共二、填空题:本题共 4 小题,每小题小题,每小题 5 分,共分,共 20 分分137014124154161三、解答题:共三、解答题:共 70 分解答应写出文字说明、证明过程或演算步骤分解答应写出文字说明、证明过程或演算步骤17解:(1)由表知x的平均数为1 234535x 522221()(1 3)(23)(53)10iixx51552211()()1.281.280.98100.171.7()()iiiiiiixxyyrxxyy75.098.0,y与x具有较高的线性相关程度(2)设增长率为p,则1.8(1)p1.98,解得p0.1min0.110%p该市 2022 年农村

13、居民人均可支配收入相对 2021 年增长率最小值为10%18 解:(1)设等比数列na的公比为q,0na,0q,由342aa得3131)(qaqa11a12nnSSm,212SSm,322SSm,32212()SSSS,即322aa,223aaq所以1112()nnnaa qnN(2)212SSm,1212aaam,112aam1(12)21()12nnnSnN1112211(21)(21)2121nnnnnnnnmmSS12231111111()()()212121212121nnnT12111n19(1)证明:PE 平面ABCD,AB 平面ABCD,PEABABBC,ADBC,ABAD又E

14、ADPE,AB平面PADPA平面PAD,PAAB理科数学答案 第 2页(共 4 页)取PA的中点M,连接EM,FM,F为PB的中点,FMABFMPAtan2PDA,tan2PDE,2DEPE,ADDEPE22,D为AE的中点,PEAE,EMPA又MFMEM,PA平面EFMEF 平面EFM,EFPA.(2)解:222BCADDE,2PE.BC AE,且 BCAE,ABBC,四边形ABCE为矩形,CE 平面PAE.1111123323E PDCP DECDECVVSPECE,1CE.以E为原点,分别以EA,EC,EP 方向为x轴,y轴,z轴建立如图所示空间直角坐标系Exyz则D(1 0 0),C(

15、0 1 0),1(1 1)2F,(1 0 0)ED ,,1(1 1)2EF ,易知1(0 0 1),n是平面DEC的一个法向量设平面FDE的一个法向量为2(z)xy,n,2200EDEF ,nn,即0102xxyz,不妨取2y ,得2(021),n12121215cos|55,n nnnnn由图知二面角CDEF的平面角为锐角,二面角CDEF的余弦值为55.20解:(1)由题知1(1 0)F ,2(1 0)F,.设1F关于直线l的对称点坐标为()xy,则11122yxkyxk ,解得2221121kxkkyk ,根据条件得2222222(1)412(1)(1)kkkk,解得21k,即1k(2)设

16、1122(),()M xyN xy,.把yx带入椭圆C方程得A,B的坐标为66(,)33,66(,)33.由已知得直线MN的方程为1(1)yk x交线段AB于D,16633661133k,即62162k设()DDD xy,在中令yx,得111Dkxk,21211|1(1)1kF Dkk21111kkABCMEFPDxyz理科数学答案 第 3页(共 4 页)把代入2212xy并化简得2222111(12)4220kxk xk0,221112122211422,1212kkxxxxkk.221112212 2(1)|1|12kMNkxxk222121|12|2 2(1)F DkMNk令11tk,则

17、22121121223()(1)33kkt,当,32t 即112k 时,212112(1)kk取得最小值23所以22|F DMN的最小值为2621解:(1)由()elnmxf xxx得0 x,且1()eemxmxfxmxx1x 是函数()f x的极值点,(1)ee10mmfm,即110emm 设11()1exxf x,则12()exxf x当2x 时,1()0f x,1()f x单调递减,当2x 时1()0f x,1()f x单调递增又当2x 时,1()0f x,且1(0)0f,0m 当0m 时,()lnf xxx,1()1fxx 若01x,()0fx,()f x单调递减;若1x,()0fx,

18、()f x单调递增,(1)0f,1x 是()f x的极小值点所以()f x的单调减区间为(0 1,增区间为1 ),(2)证明:12m ,0 x,12mxx,12eexmx12()elnelnxmxf xxxxx构造函数12e()xg xx,则122(2)e()2xxg xx,当02x时,()0g x,()g x单调递减,当2x 时,()0g x,()g x单调递增由于(2)0g,mine()(2)2g xg设2ln()1xh xx,则31 2ln()xh xx,当0ex时,()0h x,()h x单调递增,当ex 时,()0h x,()h x单调递减由于(e)0h,max()(e)h xh11

19、2e2e1e2e 1(1)022e2e,minmax()()g xh x,()()g xh x,12exx2ln1xx,即122elnxxxx2()f xx所以曲线()yf x上所有的点都在抛物线2xy内22解:(1)将222xy,cosx,siny代入C的极坐标方程22 cos2 sin20得曲线C为222220 xyxy,即4)1()1(22yx 4 分理科数学答案 第 4页(共 4 页)(2)易知点P在直线l上,将直线l的参数方程2cos()2sinxttyt,为参数代入曲线C方程得4)sin1()cos1(22tt,整理得02)cos(sin22tt设点A,B对应该的参数分别为1t,2

20、t,则)cos(sin221tt,0221t t,由参数t的几何意义不妨令|1PAt,|2PBt|2121ttttPBPA122sin44)(21221t ttt当12sin,即()4kkZ时,22|)|(|min PBPA23(1)解:不等式可化为|1|22mxx,|1|1|mxx,两边同时平方可得222mmmx原不等式解集为|0 x x,0m,即21mx021m,2m(2)解:)()(bfaf,|1|1|22ba,|1|1|ba)1(2)1(|xfxfx,)(xfy 关于直线1x对称,ba10,11ba,即2ba所以1)1(45)1)(114(baabbaba9425,当且仅当1)1(4baab,即34,32ba时取“=”,114ba的最小值为9

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 高考专区 > 模拟试题
版权提示 | 免责声明

1,本文(四川省达州市2023届高三第一次诊断性测试理科数学试卷+答案.pdf)为本站会员(副主任)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|