1、学习目标1.理解平方根的概念及表示方法.2.理解并掌握平方根的性质.(难点)3.理解开平方运算,体会数学中的互逆思想.(重点)导入新课导入新课情景引入学校要举行美术作品比赛,小鸥想裁出一块面积为25 dm2的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?问题 请你说一说解决问题的思路 想一想 若正方形的面积如下,请填表:正方形的面积/dm2 1 9 16 36正方形的边长/dm 425134625你能指出它们的共同特点吗?都是已知一个正数的平方,求这个正数.讲授新课讲授新课平方根的概念及性质一问题1 解析:如果一个数的平方等于9,这个数是多少?由于 ,所以这个数是3或-
2、3.23=9想一想 3和-3有什么特征?想一想 问题2 根据上面的研究过程填表:2x1163649425x146725 如果我们把 分别叫做 的平方根,你能给出平方根的概念吗?214675、41 16 36 4925、u平方根的概念平方根的概念 一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根这就是说,如果 ,那么x 叫做a的平方根2xa由于x20,故a0,所以我们在求一个数a的平方根时,a0是一个隐含条件.注意观察与思考下列各数有平方根吗?0;0.000196;-81.16;25想一想 因为02=0,且任何不为0的数的平方都不等于0,所以0的平方根只有一个,它就是0本身.即
3、:.负数有平方根吗?因为正、负、0的平方都不是负数,所以负数没有平方根.如:-81无意义.u平方根的性质(1)一个正数有两个平方根,它们互为相反数;(2)0只有两平方根,是0本身;(3)负数没有平方根.开平方运算二u开平方求一个数a的平方根的运算,叫做开平方.149+1-1+2-2+3-3149+1-1+2-2+3-3开平方平方2xaxa 底数指数a=x2幂(x的平方)根号a为x的平方x为a的平方根a的平方根被开方数平方运算与开平方运算互为逆运算.典例精析例 小明房间的面积为10.8平方米,房间地面恰由120块相同的正方形地砖铺成,问每块地砖的边长是多少?设每块地砖的边长为x米,由题意得:答:
4、每块的地砖的边长是0.3米.210.80.09,0.090.3.120 xx 解:当堂练习当堂练习1.下列个数有平方根吗?如果有,写出它的平方根,如果没有,说明理由.解:(1)64;(2)(3)0;(4);(5).16;42231625(1)有平方根,8;(2)有平方根,;25(3)有平方根,0;(4)有平方根,;23(5)没有平方根,负数没有平方根.2.如果一个数的两个平方根时a+3,2a-15,那么这个数是多少?解:因为一个数正数的两个平方根互为相反数,所以(a+3)+(2a-15)=0,解得a=4,当a=4,a+3=7,2a-15=-7.即这个数是7,-7.3.求下列各式中x的值x2=3
5、61;81x249=0;49(x2+1)=50.x=19;x=7;9x=1.7课堂小结课堂小结u平方根的概念平方根的概念 一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根这就是说,如果 ,那么x 叫做a的平方根2xau平方根的性质(1)一个正数有两个平方根,它们互为相反数;(2)0只有两平方根,是0本身;(3)负数没有平方根.u开平方求一个数a的平方根的运算,叫做开平方.见学练优本课时练习课后作业课后作业学习目标1.认识轴对称图形,能够识别简单的轴对称图形.2.理解两个图形成轴对称的概念,能够运用轴对称的性质作图.(难点)3.理解线段垂直平分线的意义和线段的轴对称性并用其作图
6、.(重点)导入新课导入新课情景引入 轴对称在我们的生活中无处不在,无论是随风起舞的风筝,凌空翱翔的飞机,还是中外各式风格的典型建筑都和轴对称密不可分.现在就让我们一起来认识这奇妙的轴对称吧!讲授新课讲授新课轴对称图形与轴对称的概念一问题1 如图,观察这几张图片,它们是不是轴对称,可通过什么方法进行说明?amu轴对称图形和对称轴 一般地,如果一个图形沿某条直线对折后,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴.练一练 下列图形是轴对称图形吗?轴对称图形的对称轴二 对称轴图形是指一个图形的轴对称性,两个图形之间往往也具有这种对称性.如图中的两个图形,沿图中的虚线对
7、折后,这两个图形完全重合u轴对称 一般地,如果两个图形沿某条直线对折后,这两个图形能够完全重合,那么我们就说这两个图形成轴对称,这条直线叫做对称轴.练一练 下列图形成轴对称吗?轴对称图形和轴对称图形的性质三观察与思考C AABBC l 如图,ABC与ABC成轴对称,直线l是对称轴.观察图中的两个图形的特点.知识要点u对应点 u对应线段 点A与点_,点B与点_,点C与点_分别是对应点.ABC线段AB与线段_,线段BC与线段_,线段CA与线段_分别是对应线段.ABBCCAu对应角 A与_,B与_,C与_分别是对应角.ABC知识要点比较归纳轴对称图形两个图形成轴对称图形区别联系一个图形具有的特殊形状
8、两个全等图形的特殊的位置关系1.都是沿着某条直线折叠后能重合.2.可以互相转化.想一想(1)根据全等的意义,ABC和ABC全等吗?对应线段有怎样的数量关系?对应角呢?想一想(2)对应角点的连线AA,BB,CC分别与对称轴l具有怎样和的位置关系?ABCABC对应线段相等对应角相等AABBCCAAl,BBl,CClu轴对称图形的性质 如果两个图形关于某条直线成轴对称,那么,这两个图形是全等形,它们的对应线段相等,对应角相等,对应点所连的线段被对称轴垂直平分.当堂练习当堂练习 2.找出下列各图形中的对称轴,并说明哪一个图形的对称轴最多.3.(1)整个图形是轴对称图形吗?对称轴是什么?(2)图中红色的三角形与哪些三角形成轴对称?(3)图形可以看作某两个图形成轴对称吗?4.请你利用一个等腰三角形、两个长方形、三个圆,设计一些具有轴对称特征的图案,并用简练的文字说明你的创意.课堂小结课堂小结轴对称轴 对 称轴对称图形定 义性质定 义性质轴 对 称 与轴对称图形联 系区 别见学练优本课时练习课后作业课后作业