1、lNeurons:Excitable cells “wiring”“Signal Senders”lNeuroglia:Support,Nurturing,InsulationCellular ComponentsNerve CellsNeuronsNeuroglial二、神经元二、神经元l l 1.结构结构l l 胞体胞体l 树突树突l 突起轴突突起轴突 胞体胞体树突树突轴突轴突神经末梢神经末梢神经胶质细胞神经胶质细胞l(1)胞体胞体 soma l 是神经元营养和代谢的中心,主要位于是神经元营养和代谢的中心,主要位于l脑皮质,脊髓的灰质以及神经节内。脑皮质,脊髓的灰质以及神经节内。l 细胞膜
2、细胞膜 cell membranel 可兴奋膜,感受刺激,传导神经冲动。可兴奋膜,感受刺激,传导神经冲动。l 细胞核细胞核 cell nucleusl 核大而圆,位于细胞中央,着色浅,核仁核大而圆,位于细胞中央,着色浅,核仁l 明显。明显。l l 细胞质细胞质 cytoplasml 除了有一般的细胞器外,还有尼氏体、神经除了有一般的细胞器外,还有尼氏体、神经l 原纤维原纤维l 尼氏体尼氏体 Nissl body lLM:颗粒或斑块状颗粒或斑块状 lEM:有:有RER、R l 功能功能:合成蛋白质,如结构蛋白、酶、合成蛋白质,如结构蛋白、酶、l 神经调质等。神经调质等。1.1.细胞膜细胞膜2.2
3、.细胞核细胞核3.3.核核 仁仁4.4.尼氏体尼氏体5.5.轴轴 丘丘l 神经原纤维神经原纤维 neurofibril l 银染银染 LM:呈棕黑色细丝:呈棕黑色细丝 l EM:神经丝、微管:神经丝、微管l 功能:构成神经元的细胞骨架,也参与功能:构成神经元的细胞骨架,也参与l 物质运输。物质运输。肾上腺素能神经元 d.有些微管特异性药物在微管结构与功能研究中起重要作用,这些药物主要有:紫衫酚、秋水仙素、长春花碱等。Short axons(shortest axons terminate only a few micron from cell body,interneurons)communi
4、cating between neurons;form circuits in the CNSEndoplasmic Reticulum(ER)Mitochondria Golgi Apparatus-微管蛋白也存在于所有的真核细胞中。其功能是增加微管装配的起始点和促进起始装配速度,进而促进二聚体聚合成多聚体。Functional Classification of Neuron微丝是由G-肌动蛋白单体形成的多聚体,肌动蛋白单体具有极性,装配时首尾相接,故微丝也有极性。在神经元迁移过程中起作用;然而在一定条件下,如干扰素作用下,神经细胞和胶质细胞都能合成MHC。synaptic vesicle
5、s包围在感觉神经元胞体的周围,构成神经节。星形胶质细胞通过摄取,参与Glu和GABA释出后的失活过程和递质兴奋受体的调节。微管结合蛋白在细胞中起稳定微管结构、促进微管聚合和调节微管装配的作用。另外,微管结合蛋白在细胞中的分布区域不尽相同,它们执行的特殊功能也不一样,这在神经细胞中尤为突出。研究发现,刺激大脑皮质、视神经传导束、神经纤维和外周神经,随即发生局部胶质细胞膜去极化,经数秒才下降或消失。中枢神经组织的髓鞘是由寡突细胞突起形成的,因此,其功能与外周神经的许旺氏细胞相同。MAP1C是一种胞质动力蛋白(dynein),具有ATP酶活性,与轴突中逆向的物质运输有关。常规染色标本上只能看到细胞核
6、,用现代免疫细胞化学方法可在光镜下观察胶质细胞的整体形态,电镜下可发现在胶质细胞之间存在着低电阻通路的缝隙连接(gap junction)。l1963年,电镜技术中采用戊二醛常温固定后才首次在细胞中观察到微管结构,使人们真正认识到细胞内骨架成分的存在,并命名为细胞骨架(cytoskeleton)。早期发现的细胞骨架主要是存在于细胞质内的微管、微丝和中间丝.l细胞骨架是由三类蛋白质纤维组成的网状结构系统,包括微管(microtubule)、微丝(microfilament)和中间丝(intermediate filament)。每一类纤维由不同的蛋白质亚基形成,三类骨架成分既分散地分布于细胞中,
7、又相互联系形成一个完整的骨架体系。细胞骨细胞骨架体系是一种高度动态结构,可随着生理条件架体系是一种高度动态结构,可随着生理条件的改变不断进行组装和去组装,并受各种结合的改变不断进行组装和去组装,并受各种结合蛋白的调节以及细胞内外各种因素的调控。蛋白的调节以及细胞内外各种因素的调控。微管微管l微管存在于所有的真核细胞中,微管是长长的较为坚硬而中空的蛋白管道,它可以迅速地在胞内某一处去组装然后在另一处组装。l细胞内微管呈网状或束状分布,在细胞内造成了一个轨道系统,各种小囊泡、细胞器以及其他组分沿着微管可以在细胞内移动。l胞质微管是细胞骨架的一部分,引导胞内运输以及胞内膜性细胞器的定位。l微管还能与
8、其他蛋白质共同装配成纤毛、鞭毛、基体、中心体、纺锤体等结构,参与细胞形态的维持、细胞运动和细胞分裂等(一)微管的形态结构和存在形式(一)微管的形态结构和存在形式l微管是由微管蛋白(tubulin)装配成细长的、具有一定刚性的圆管状结构。微管为一中空结构,在各种细胞中微管的形态和结构基本相同,但长度不等,有的可达数微米。l微管的管壁由13根原纤维(protofilament)排列构成,每一根原纤维由微管蛋白亚基和微管蛋白亚基相间排列而成。l微管可装配成单管(singlet)、二联管(doublet)和三联管(triplet)。l单管由13根原纤维围成,是细胞质中主要的存在形式,分散或成束分布,但
9、不稳定,易受低温、Ca2+等许多因素的影响而发生解聚。l二联管由A、B两根单管组成。l三联管由A、B、C三根单管组成,二联管和三联管是比较稳定的微管结构。l 有些微管特异性药物在微管结构与功能研究中起重要作用,这些药物主要有:紫衫酚、秋水仙素、长春花碱等。l紫衫酚能和微管紧密结合防止微管蛋白亚基的解聚,加速微管蛋白的聚合加速微管蛋白的聚合作用。秋水仙素和已酰甲基秋水仙碱能结合和稳定游离的微管蛋白,使它无法聚合成微管,引起微管的解聚作用引起微管的解聚作用。长春花碱和长春花新碱能结合微管蛋白异二聚体亚单位,抑制它们的聚合作用。nocodazole能结合微管蛋白,阻断微管蛋白的聚合反应。(二)微管的
10、化学组成(二)微管的化学组成l微管主要由微管蛋白构成,微管蛋白主要成分为-微管蛋白和-微管蛋白,约占微管总蛋白质含量的8095。-微管蛋白与-微管蛋白在化学性质上极为相似,具有同一个基因祖先,并在进化过程中极为保守。l-微管蛋白或-微管蛋白靠非共价键结合以异二聚体的形式存在,异二聚体是构成微管的基本亚单位,若干异二聚体亚单位首尾相接,形成了原纤维。由于-微管蛋白暴露在一头,-微管蛋白暴露在另一头,所以原纤维本身具有极性。微管是由13根原纤维靠非共价键排列而成,在大小上均匀一致,整体上也具有极性。l每一微管蛋白异二聚体上含有GTP的二个结合位点,微管蛋白与GTP结合而被激活,引起分子构象变化,从
11、而聚合成微管;还含有一个长春花碱的结合位点和二价阳离子Mg2+的结合位点。另外,-微管蛋白肽链中的第201位的半胱氨酸为秋水仙素分子的结合部位。l-微管蛋白也存在于所有的真核细胞中。尽管它不是构成微管的主要成分,只占微管蛋白总含量的不足1,但却是微管执行功能所必不可少的。-微管蛋白定位于微管组织中心,对微管的形成、微管的数量和位置、微管极性的确定及细胞分裂起重要作用。编码-微管蛋白的基因如发生突变,可引起细胞质微管在数量、长度上的减少和由微管组成的有丝分裂器的缺失,而且可以强烈地抑制核分裂从而影响细胞分裂。(三)微管结合蛋白(三)微管结合蛋白l在细胞内,微管除含有微管蛋白外,还含有一些同微管相
12、结合的辅助蛋白,这些蛋白质总是与微管共存,参与微管的装配,称为微管结合蛋白(microtubule-associated protein,MAP),它们不是构成微管壁的基本构件,而是在微管蛋白装配成微管之后,结合在微管表面的辅助蛋白。分泌多种生长因子和增效因子;突触小泡:神经递质神经调质当一些神经胶质细胞由于K+增加而发生去极化,而另一些神经胶质细胞则未发生这种变化时,两者间即有电位差,低电阻偶合对于神经胶质细胞间的电流传导是必需的,这种电流可被细胞外电极在组织表面引导出来。-微管蛋白也存在于所有的真核细胞中。5、正端追踪蛋白 称为正端追踪蛋白(plus-end-tracking protei
13、n)或“+TIPs”的微管结合蛋白,定位于微管的正端,它在微管形成的控制、微管与细胞膜或动粒的连接及微管的踏车运动(tread milling)中起作用包括角蛋白纤维、神经元纤维、波形蛋白样纤维、核纤层蛋白、巢蛋白和未归类的中间丝蛋白。突触小泡:神经递质神经调质MAP1有三种不同的亚型:MAP1A、MAP1B和MAP1C。星形胶质细胞的活动受神经递质的调制二联管由A、B两根单管组成。Rate(mm/day)脑内一些部位缺乏BBB,如室周器官,脉络丛以及软脑膜;from receptor to CNS;receive stimuli and transmit afferent impulses
14、to CNS其功能是增加微管装配的起始点和促进起始装配速度,进而促进二聚体聚合成多聚体。而脑缺血后反应性胶质细胞增生、星形胶质细胞摄取Glu增强、同时GS活性也增强,它们增加的程度与改善缺血后神经元存活的程度具有相关性。Axon Hillock-微管蛋白也存在于所有的真核细胞中。在有丝分裂过程中XMAP215的磷酸化可抑制这种活性。Dendrites take information to the cell body and axons take information away from the cell body它们和肌动蛋白相结合,控制着肌动蛋白的构型和行为。MAP1C是一种胞质动力蛋白
15、(dynein),具有ATP酶活性,与轴突中逆向的物质运输有关。l微管结合蛋白有两个区域组成:l一个是碱性的微管结合区域,该结构域可与微管结合,可明显加速微管的成核作用;l另一个是酸性的突出区域,以横桥的方式与其他骨架纤维相连接,突出区域的长度决定微管在成束时的间距大小。l实验证明,MAP2在细胞中过表达会产生很长的突出区域,使微管在成束时保持较宽的间隔;Tau蛋白的过表达会产生极短的突出区域,使微管在成束时紧密。l微管结合蛋白在细胞中起稳定微管结构、促进微管聚合和调节微管装配的作用。l微管结合蛋白的磷酸化在控制微管蛋白的活性和细胞中的定位中起基本作用。l另外,微管结合蛋白在细胞中的分布区域不
16、尽相同,它们执行的特殊功能也不一样,这在神经细胞中尤为突出。l在高等生物中目前发现有几种微管结合蛋白,包括MAP1、MAP2和MAP4三种。此外,还有一类与微管结合的蛋白质称为Tau蛋白。各种微管均由-微管蛋白/-微管蛋白异二聚体组成,微管的结构和功能的差异主要取决于微管结合蛋白的不同。1、Tau蛋白蛋白lTau蛋白有5种不同的类型,由同一基因编码,是一类低分子量(55KDa62KDa)的辅助蛋白,也称装饰因子,存在于神经细胞轴突中。Tau蛋白呈“”形,它的N-末端和C-末端能形成18nm的短臂,结合在相邻的微管上以稳定微管。其功能是增加微管装配的起始点和促进起始装配速度,进而促进二聚体聚合成
17、多聚体。另外Tau蛋白也有控制微管延长的作用。Tau蛋白可被钙调素激酶、蛋白激酶A及P42MAP激酶磷酸化,Tau蛋白被蛋白激酶磷酸化后,可以减弱它与微管蛋白的结合从而使微管聚合减弱。2、MAP1 l是一类高分子量(200KDa300KDa)的蛋白质,常见于神经轴突和树突中。MAP1常在微管间形成横桥,它可以控制微管的延长,但不能使微管成束。lMAP1有三种不同的亚型:MAP1A、MAP1B和MAP1C。MAP1C是一种胞质动力蛋白(dynein),具有ATP酶活性,与轴突中逆向的物质运输有关。3、MAP2lMAP2能在微管间以及微管与中间丝之间形成横桥。与MAP1不同,MAP2能使微管成束。
18、MAP2分子呈“L”形,以其短臂结合到微管表面,短臂为微管促进装配区域;长臂则以垂直方向从微管表面伸出。当微管结合有MAP2时,在电镜下可显示出其表面的短纤丝。lMAP2分子上有一些磷酸化部位,当cAMP依赖性蛋白质激酶以其调节亚基同MAP2长臂结合时,可使MAP2磷酸化,磷酸化的MAP2可抑制微管装配。lMAP2有三种不同的亚型:MAP2A、MAP2B和MAP2C。lMAP2A分子量为270KDa,在神经元发育过程中不断增加表达;lMAP2B的分子量也为270KDa,在神经元发育过程中的表达保持恒定;lMAP2C的分子量为70KDa,存在于不成熟的神经元树突中。4、MAP4l广泛存在于各种细
19、胞(包括神经原细胞和非神经原细胞)中,分子量为200KDa左右,在进化上具有保守性,具有高度的热稳定性。l5、正端追踪蛋白 称为正端追踪蛋白(plus-end-tracking protein)或“+TIPs”的微管结合蛋白,定位于微管的正端,它在微管形成的控制、微管与细胞膜或动粒的连接及微管的踏车运动(tread milling)中起作用l6、stathmin 是一种小分子的蛋白质,一分子stathmin结合两个微管蛋白异二聚体以阻止异二聚体添加到微管的末端。细胞中高活性水平的stathmin,会降低微管延长的速率。stathmin的磷酸化会抑制stathmin结合到微管蛋白上,导致stat
20、hmin磷酸化的信号能加速微管的延长和动力学上的不稳定。l7、XMAP215 是一种普遍存在的蛋白质,能优先结合在微管旁边,稳定微管的游离末端,抑制微管从生长到缩短的转变。在有丝分裂过程中XMAP215的磷酸化可抑制这种活性。(五)微管的主要功能l1、构成细胞内的网状支架,支持和维持细胞的形态 微管本身不能收缩,且具有一定的刚性,因而在保持细胞外形方面起支持作用。l2、参与中心粒、纤毛和鞭毛的形成 细胞核 cell nucleus星形胶质细胞是中枢神经系统中主要的糖原储存细胞,当细胞膜上的b肾上腺素受体与其配体结合后,可激活腺苷酸环化酶,产生第二信使cAMP,促使细胞内储存的糖原分解为葡萄糖,
21、以供神经元利用。Microfilaments,metabolic enzymes,clathrin complex神经轴突再生过程必须有胶质细胞的导引才能成功微丝是由肌动蛋白(actin)组成的细丝,普遍存在于真核细胞中。脑内有抗原提呈细胞(antigen-presenting cells,APC),如星形胶质细胞和小胶质细胞等。生发层细胞有大量的中间丝纤维束,它们的构成成分是前角蛋白(prekeratin)。Chemical synapse:郎飞结 3.不同的中间丝蛋白在不同类型的细胞中表达,根据其组织来源和免疫原性以及蛋白质的氨基酸序列,可将中间丝分为6大类,神经纤维和神经myelin s
22、heath中枢神经组织的髓鞘是由寡突细胞突起形成的,因此,其功能与外周神经的许旺氏细胞相同。微管存在于所有的真核细胞中,微管是长长的较为坚硬而中空的蛋白管道,它可以迅速地在胞内某一处去组装然后在另一处组装。星形胶质细胞通过摄取,参与Glu和GABA释出后的失活过程和递质兴奋受体的调节。中枢神经系统的神经胶质细胞微丝主要参与Rho蛋白家族有关的信号传导,Rho蛋白家族(Rho protein family)是与单体的GTP酶有很近亲缘关系的蛋白质,它的成员有:Cdc42、Rac和Rho。5、正端追踪蛋白 称为正端追踪蛋白(plus-end-tracking protein)或“+TIPs”的微管
23、结合蛋白,定位于微管的正端,它在微管形成的控制、微管与细胞膜或动粒的连接及微管的踏车运动(tread milling)中起作用如胞外液中K+聚集过高可引起神经元发生癫痫样放电。小胶质细胞还是一些受体和分泌物的重要储库。Rho蛋白通过GTP结合状态和GDP结合状态循环的分子转变来控制细胞传导信号的作用。肌动蛋白单体外观呈哑铃形,称为G-肌动蛋白(球形-肌动蛋白)。Chemical synapse:有作者用免疫电镜观察到大鼠的脑垂体中有GABA、脑啡肽和P物质免疫反应阳性神经元末梢与胶质细胞形成突触样结构。运动神经元motor neuron:传出神经元Golgi type II Neurons然而
24、在一定条件下,如干扰素作用下,神经细胞和胶质细胞都能合成MHC。在神经组织移植中,星形胶质细胞参与神经营养反应,促进移植物的存活和损伤细胞的再生;Rho蛋白通过GTP结合状态和GDP结合状态循环的分子转变来控制细胞传导信号的作用。的电镜下,中间丝的直径约为10nm,由不同的蛋白质组成,其功能主要与维持细胞外形和各种细胞器的位置有关。按神经元释放的递质不同分:Amacrine Neuronsstathmin的磷酸化会抑制stathmin结合到微管蛋白上,导致stathmin磷酸化的信号能加速微管的延长和动力学上的不稳定。随着细胞分化的进程,可以检出它们逐渐表达出不同的角蛋白。中间丝与核纤层、核骨
25、架等共同构成贯穿于细胞核内外的网架体系,在细胞构建、分化等多种生命活动过程中起重要作用Axon:only one(branches are collaterals;terminals are end feet)action potential generationRho蛋白通过GTP结合状态和GDP结合状态循环的分子转变来控制细胞传导信号的作用。Chemical synapse:Functional Classification of Neuroncommunicating between neurons;form circuits in the CNS5、正端追踪蛋白 称为正端追踪蛋白(pl
26、us-end-tracking protein)或“+TIPs”的微管结合蛋白,定位于微管的正端,它在微管形成的控制、微管与细胞膜或动粒的连接及微管的踏车运动(tread milling)中起作用l3、维持细胞内细胞器的定位和分布 l4、为细胞内物质运输提供轨道 。微丝微丝l微丝是由肌动蛋白(actin)组成的细丝,普遍存在于真核细胞中。肌动蛋白是真核细胞中含量最丰富的蛋白质,在肌肉细胞中,肌动蛋白占细胞总蛋白的10,在非肌肉细胞中也占了15。l微丝在细胞的形态维持以及细胞运动中起着重要的作用。微丝对于细胞的多种运动尤其是与细胞表面有关的运动十分重要。若没有微丝,动物细胞就不能沿着某一表面爬行
27、,不能通过吞噬作用摄入大的颗粒,细胞也不能分裂。象微管一样,微丝是不稳定的,但它在细胞中也能形成稳定的结构,象肌肉中的收缩单位。微丝与许多种肌动蛋白结合蛋白相结合,使它能够在细胞内行使各种功能。l微丝的主要成分是肌动蛋白,它是微丝结构和功能的基础。肌动蛋白单体外观呈哑铃形,称为G-肌动蛋白(球形-肌动蛋白)。每个G-肌动蛋白由2个亚基组成,它具有阳离子(Mg2+和K+或Na+)、ATP(或ADP)和肌球蛋白结合位点。微丝是由G-肌动蛋白单体形成的多聚体,肌动蛋白单体具有极性,装配时首尾相接,故微丝也有极性。l同样的微丝在细胞内功能不一致,有的使细胞运动,有的支撑细胞,还有的行使更为复杂的功能,
28、这在很大程度上和细胞质存在许多种类的微丝结合蛋白(microfilament-associated protein)有关。它们和肌动蛋白相结合,控制着肌动蛋白的构型和行为。微丝结合蛋白中有些只在特定细胞中存在,有的是细胞所共有的,其名称根据它们对微丝结构和组装影响而定。l(五)微丝的功能(五)微丝的功能l在微丝结合蛋白的协助下,微丝在真核细胞中形成了广泛存在的骨架结构。与细胞许多重要的功能活动有关。l1 支撑作用l形成应力纤维 l支持微绒毛l2、参与细胞运动l变形运动 l细胞分裂 l肌肉收缩l3、参与胞内信息传递 细胞表面的受体在受到外界信号作用时,可触发细胞膜下肌动蛋白的结构变化,从而启动细
29、胞内激酶变化的信号转导过程。微丝主要参与Rho蛋白家族有关的信号传导,Rho蛋白家族(Rho protein family)是与单体的GTP酶有很近亲缘关系的蛋白质,它的成员有:Cdc42、Rac和Rho。Rho蛋白通过GTP结合状态和GDP结合状态循环的分子转变来控制细胞传导信号的作用。活化的Cdc42触发肌动蛋白聚合作用和成束作用,形成线状伪足或微棘。活化的Rac启动肌动蛋白在细胞外周的聚合形成片足和褶皱。活化的Rho既可启动肌动蛋白纤维通过肌球蛋白纤维成束形成应力纤维,又可通过蛋白质的结合形成点状接触。三、中间丝三、中间丝l中间丝是细胞骨架的一种主要种类,广泛存在于真核细胞中,有很强的抗
30、拉强度,因而它们的主要功能是使细胞在被牵伸时能经受住机械力的作用。l中间丝在三类细胞骨架纤维中最为坚韧和耐久的,当细胞用高盐和非离子去垢剂处理时,只有中间丝可以保留,其余大部分的骨架纤维都被破坏了。在大多数情况下,它们很典型地形成满布在细胞质中的网络,包围着细胞核,还延伸到细胞膜的周边,在那里它们往往锚着在细胞膜上的细胞连接上。l中间丝与核纤层、核骨架等共同构成贯穿于细胞核内外的网架体系,在细胞构建、分化等多种生命活动过程中起重要作用 l(一)中间丝的形态结构(一)中间丝的形态结构l中间丝就象是很多股长线绞起来以增加强度的绳子,着根绳子的每一股长长纤维蛋白是中间丝的亚基。的电镜下,中间丝的直径
31、约为10nm,由不同的蛋白质组成,其功能主要与维持细胞外形和各种细胞器的位置有关。与微管和微丝不同,中间丝蛋白合成后基本上均装配成中间丝,游离的单体很少。中间丝结构极稳定,不受细胞松弛素和秋水仙素的影响,因而在化学性质上与微丝和微管不同。许多动物细胞的中间丝形成一个“筐”,围住细胞核,并向细胞周围伸展。l(二)中间丝的化学组成(二)中间丝的化学组成l 中间丝是由中间丝蛋白家族组成。不同的中间丝蛋白在不同类型的细胞中表达,根据其组织来源和免疫原性以及蛋白质的氨基酸序列,可将中间丝分为6大类,l包括角蛋白纤维、神经元纤维、波形蛋白样纤维、核纤层蛋白、巢蛋白和未归类的中间丝蛋白。l神经元纤维(neu
32、rofilament)包括神经元纤维蛋白(neurofilament protein,NF)和-内连蛋白(-internexin),高浓度存在于脊椎动物神经元轴突中。l-内连蛋白分子量为56 KDa。l神经元纤维蛋白由3种分子量分别为68 KDa、150 KDa和200 KDa的神经元纤维蛋白(NF-L、NF-M、NF-H)在体内共同装配,由NF-L和NF-M或NF-H形成异多聚体。l波形蛋白样纤维 波形蛋白样纤维包括四种蛋白质:间质细胞(在成纤维细胞、血管内皮细胞、白细胞等)来源的波形蛋白、肌肉细胞(骨骼肌、心肌和平滑肌)来源的结蛋白、胶质细胞(星形细胞和一些Schwann细胞)来源的胶质纤
33、维酸性蛋白和一些神经细胞来源的外周蛋白.l巢蛋白(nestin)在神经上皮细胞(neuroepithelial cell)和辐射状胶质细胞(radial glial cell)中表达。巢蛋白能影响神经脊细胞.l(三)中间丝结合蛋白(三)中间丝结合蛋白l尽管有些中间丝可通过自我装配成束,如神经元纤维蛋白NF-M和NF-H有C-端区域伸出纤维表面结合相邻的中间丝,但其他类型的中间丝结合成束需要附属蛋白帮助,这些附属蛋白质本身不是中间丝的组成蛋白,但在结构和功能上与中间丝有密切联系,称为中间丝结合蛋白。还含有一个长春花碱的结合位点和二价阳离子Mg2+的结合位点。EXCITABLE Membrane:
34、Able to regulate the movement of ions(charges)across and along membrane SIGNAL TRANSDUCTIONAxonal Transport Systems巢蛋白(nestin)在神经上皮细胞(neuroepithelial cell)和辐射状胶质细胞(radial glial cell)中表达。在细胞内形成一个完整的网状骨架系统intracellular communication-微管蛋白或-微管蛋白靠非共价键结合以异二聚体的形式存在,异二聚体是构成微管的基本亚单位,若干异二聚体亚单位首尾相接,形成了原纤维。星形胶质
35、细胞是中枢神经系统中主要的糖原储存细胞,当细胞膜上的b肾上腺素受体与其配体结合后,可激活腺苷酸环化酶,产生第二信使cAMP,促使细胞内储存的糖原分解为葡萄糖,以供神经元利用。PNS:施万细胞。它们和肌动蛋白相结合,控制着肌动蛋白的构型和行为。(四)星形胶质细胞和小胶质细胞参与神经组织构筑的塑造和维持微环境的稳定稳定细胞外的K+浓度;分泌多种生长因子和增效因子;胶质细胞与神经元一样也具有细胞突起,但其胞质突起不分树突和轴突。胶质细胞对细胞间液中K+的缓冲作用在神经组织移植中,星形胶质细胞参与神经营养反应,促进移植物的存活和损伤细胞的再生;Dendrites:much shorter;one or
36、 more than one;branch extensively into dendritic trees中间丝就象是很多股长线绞起来以增加强度的绳子,着根绳子的每一股长长纤维蛋白是中间丝的亚基。Ultrastruct-ural component中间神经元inter neuron:联络神经元 星形胶质细胞的活动受神经递质的调制微管为一中空结构,在各种细胞中微管的形态和结构基本相同,但长度不等,有的可达数微米。l目前已经报道了约15种中间丝结合蛋白。l1、丝聚蛋白 丝聚蛋白(filaggrin)在不同的细胞中使角蛋白纤维聚集成束,提供表皮的最外层以特别的韧性,可作为区分不同的上皮细胞的特异性
37、标志。l2、网蛋白 网蛋白(plectin)能使波形蛋白成束。不仅能使 中间丝成束,而且能使中间丝与微管连接,使肌动蛋白纤维成束,帮助肌球蛋白与微丝的结合,以及介导中间丝与质膜的连接。缺乏有功能的网蛋白基因的小鼠会出现皮肤水疱和骨骼肌心肌的异常而在出生几天后死亡。l3、中间丝结合蛋白300 中间丝结合蛋白300(IFAP 300)主要作用是将中间丝锚定于桥粒上。l4、BPAG1 定位在内侧桥板,参与角蛋白与桥粒的连接。l(五)中间丝的功能(五)中间丝的功能l中间丝在胞质中形成精细发达的纤维网络,外与细胞膜及细胞外基质相连,中间与微管、微丝和细胞器相连,内与细胞核内的核纤层相连,因此,中间丝也具
38、有多种功能,而且中间丝发挥功能具有时空特异性。l1、细胞的细胞内支架作用l在细胞内形成一个完整的网状骨架系统 l提供细胞机械强度 l参与相邻细胞间、细胞与基膜间的连接结构的形成 l2、参与细胞内信息传递及物质运输l参与胞内信息传递l与mRNA转运有关l3、中间丝与细胞分化 微丝和微管在各种细胞中都是相同的,而中间丝蛋白的表达具有组织特异性,表明中间丝与细胞分化可能具有密切的关系.l胚胎发育 胚胎细胞能根据其发育的方向调节中间丝蛋白基因的表达。小鼠胚胎发育过程中,最初胚胎细胞中表达角蛋白,胚胎发育到第89天,将要发育为间叶组织的细胞中,角蛋白表达下降并停止,同时出现波形纤维蛋白的表达。在神经胚形
39、成过程中,神经板皮层细胞开始表达巢蛋白;神经细胞的迁移基本完成后,巢蛋白表达量下降,波形蛋白开始表达;随着分化的进一步完成,巢蛋白停止表达,-内连蛋白开始表达,接着波形蛋白表达量下降;出生前5天左右,神经细胞前体刚完成终末分裂,NF-L和NF-M出现;随着NF-L和NF-M的出现,波形蛋白停止表达,-内连蛋白表达量下降并维持低水平的表达。NF-H一般在出生后才开始表达,在脑的不同区域表达时间不同。l上皮分化 在上皮组织的分化过程中,角蛋白表达的变化为研究中间丝与细胞分化的关系提供了一个重要例证。在上皮细胞中,酸性角蛋白(型)和中性/碱性角蛋白(型)成对表达,并具有特异性。在表皮的分化中,细胞的
40、分化发生在表皮最深部的生发层,这些细胞一边分化,一边向表皮的表层运动,直至最后从表皮脱落。生发层细胞有大量的中间丝纤维束,它们的构成成分是前角蛋白(prekeratin)。随着细胞分化的进程,可以检出它们逐渐表达出不同的角蛋白。l决定不同类型细胞的分布 中间丝的不同类型严格地分布于不同类型的细胞中,可根据中间丝的种类区分上皮细胞、肌肉细胞、间质细胞、胶质细胞和神经细胞,具有与其来源组织相关的特异抗原性,因此可作为细胞类型区分的特征性标志之一。l细胞质骨架与疾病细胞质骨架与疾病l 细胞骨架对细胞的形态改变和维持、细胞内物质运输、细胞的分裂与分化等具有重要作用,是生命活动不可缺少的细胞结构,它们的
41、异常可引起很多疾病,包括肿瘤、一些神经系统疾病和遗传性疾病等。l 在恶性转化的细胞中,细胞常表现为细胞骨架结构的破坏和微管解聚。肿瘤细胞的浸润转移过程中某些细胞骨架成分的改变可增加癌细胞的运动能力。微管微丝可作为肿瘤化疗药物的靶位,长春花碱、秋水仙素和细胞松弛素等及其衍生物作为有效的化疗药物可抑制细胞增殖,诱导细胞凋亡。另外,中间丝的不同类型严格地分布于不同类型的细胞中,可根据中间丝的种类区分上皮细胞、肌肉细胞、间质细胞、胶质细胞和神经细胞,具有与其来源组织相关的特异抗原性,在转化细胞内又无变化,因此可作为细胞类型区分的特征性标志之一。绝大多数肿瘤细胞通常继续表达其来源细胞的特征性中间丝类型,
42、即便在转移后,仍表达其原发肿瘤的中间丝类型。因此可用于正确区分肿瘤细胞的类型及其来源,对肿瘤诊断起决定性作用。l 许多神经性疾病与骨架蛋白的异常表达有关,早老性痴呆(患者的神经元中可见到大量损伤的神经元纤维,神经元中微管蛋白的数量并无异常,但微管聚集缺陷,并存在tau蛋白的积累。l神经元纤维的异常表达与异常修饰导致某些神经系统疾病,如肌萎缩性侧脊髓索硬化症,幼稚型脊柱肌肉萎缩症,神经元纤维在运动神经元胞体和轴突近端的堆积是许多神经元退化型疾病的早期症状,使骨骼肌失去神经支配而萎缩,造成瘫痪,接着运动神经元丧失,最终导致死亡。lNF-H的异常磷酸化也会导致疾病发生。在早老性痴呆的神经元纤维缠结和
43、帕金森氏综和征的Lewy bodies中都有高度磷酸化的NF-H存在。l l一些遗传性疾病的患者常有细胞骨架的异常或细胞骨架蛋白基因的突变。如角蛋白14(CK14)基因突变导致人类遗传性皮肤病单纯性大泡性表皮松懈症(epidermolysis bullosa simplex,EBS)。Wiskott-Aldrich综合征(Wiskott-Aldrich syndrome,WAS)是X连锁隐性遗传的免疫缺陷疾病,临床表现有血小板减少、湿疹、反复感染,并发不同程度的细胞免疫和体液免疫缺乏。研究表明,WAS患者的T淋巴细胞的微丝异常,微绒毛数量减少,血小板和淋巴细胞变小。l(2)突起突起l 分树突与
44、轴突分树突与轴突l 树突树突 dendritel 一个或多个,粗短且有分支,结构类似细胞质。一个或多个,粗短且有分支,结构类似细胞质。l 功能:接受刺激,传向胞体。功能:接受刺激,传向胞体。l l 轴突轴突 axonl 只有一条,细而长,内无尼氏体。只有一条,细而长,内无尼氏体。l 轴丘轴丘 axon hillock:无尼氏体。:无尼氏体。l 功能:传导兴奋冲动,传离胞体。功能:传导兴奋冲动,传离胞体。lCell body(soma;perikaryon)lAxon:only one(branches are collaterals;terminals are end feet)lDendri
45、tes:much shorter;one or more than one;branch extensively into dendritic treesStructure of NeuronsAxon Hillock(Axonal end feet)lCell Body(Soma):Life SupportProtein SynthesisSingle Nucleus,RER(Nissl Bodies)lAxon:Longest process transmits messages away from cell bodylDendrites:Multiple processes off ce
46、ll body receive messagesNeurons Structure&Function Neurons are similar to other cells in the body in some ways such as:1.Neurons are surrounded by a membrane.2.Neurons have a nucleus that contains genes.3.Neurons contain:What are inside of a neuron?Nucleus NucleolusMicrofilaments/NeurotubulesEndopla
47、smic Reticulum(ER)Mitochondria Golgi ApparatusNissl BodiesOtherslDendrites:dendrite treelAxon:axon hillock(axon origination)axonal transport systeminitial segment(first myelin sheath)laction potential generationmyelin sheath Axon and DendritesAxonsDendritesTake information away from the cell bodyTak
48、e information to the cell bodySmooth surfaceRough surface(dendritic spines)Generally only 1 axon per cellUsually many dendrites per cellNo ribosomeHave ribosomesCan have myelinNo myelin insulationBranch further from the cell bodyBranch near the cell bodyDifferences between Axons and DendritesNeuron
49、Classification by ShapeMultipolar:“multi-”many processesMajority:Single axon,many dendrites(motor neuron and interneuron)Bipolar:“bi-”2 processes Found in some sensory organs(retina,taste,smell,inner ear neuron)Unipolar(pseudo-unipolar):“uni-”1 process(with branches)Sensory afferent neurons(dorsal r
50、oot ganglia)l神经元的分类神经元的分类l 1.按神经元突起的数目分:按神经元突起的数目分:l l a.多极神经元多极神经元 l multipolar neuron l l b.双极神经元双极神经元 l bipolar neuron l l c.假单极神经元假单极神经元l pseudounipolar neuron l l2.按神经元的功能分按神经元的功能分:l a.感觉神经元感觉神经元sensory neuron:传入神经元传入神经元l b.运动神经元运动神经元motor neuron:传出神经元传出神经元l c.中间神经元中间神经元inter neuron:联络神经元联络神经元l