数字电视技术附录A课件.ppt

上传人(卖家):晟晟文业 文档编号:4846030 上传时间:2023-01-17 格式:PPT 页数:173 大小:3.98MB
下载 相关 举报
数字电视技术附录A课件.ppt_第1页
第1页 / 共173页
数字电视技术附录A课件.ppt_第2页
第2页 / 共173页
数字电视技术附录A课件.ppt_第3页
第3页 / 共173页
数字电视技术附录A课件.ppt_第4页
第4页 / 共173页
数字电视技术附录A课件.ppt_第5页
第5页 / 共173页
点击查看更多>>
资源描述

1、附录A 模拟电视基础 附录A 模拟电视基础 A.1 彩色与视觉特性彩色与视觉特性 A.2 电视图像的传送原理电视图像的传送原理 A.3 彩色电视信号的传输彩色电视信号的传输 A.4 模拟电视广播模拟电视广播 附录A 模拟电视基础 A.1 彩色与视觉特性彩色与视觉特性 A.1.1 光的性质光的性质 1.可见光谱可见光谱 光是一种电磁辐射。电磁辐射的波长范围很宽,按波长从长至短的顺序排列起来有无线电波、红外线、可见光、紫外线、X射线和宇宙射线等。附图A-1是电磁波按波长的顺序排列的情况,称作电磁波谱。波长在380780 nm范围内的电磁波能够使人眼产生颜色感觉,称为可见光。可见光在整个电磁波谱中只

2、占极小一段。可见光谱的波长由780 nm向380 nm变化时,人眼产生的颜色感觉依次是红、橙、黄、绿、青、蓝、紫7色。一定波长的光谱呈现的颜色称为光谱色。太阳光包含全部可见光谱,给人以白色的感觉。附录A 模拟电视基础 对于光谱完全不同的光,人眼有时会有相同的色感。用波长540 nm的绿光和700 nm的红光按一定比例混合可以使人眼得到580 nm黄光的色感。这种由不同光谱混合出相同色光的现象叫同色异谱。附录A 模拟电视基础 附图A-1 电磁辐射波谱 无线电波红外线紫外线X 射线宇宙射线红橙 黄绿紫可见光1051010101510201025频率(Hz)波长(m)310 3310 2310731

3、01231017780 nm380 nm青蓝附录A 模拟电视基础 2.物体的颜色物体的颜色 物体分为发光体与不发光体。发光体的颜色由它本身发出的光谱所确定。例如,白炽灯发黄、荧光灯发白就是因为它们有其特定的光谱色。不发光体的颜色与照射光的光谱和不发光体对照射光的反射、透射特性有关。红旗反射太阳光中的红色光、吸收其它颜色的光而呈红色;绿叶反射绿色的光、吸收其它颜色的光而呈绿色;白纸反射全部太阳光而呈白色;黑板能吸收全部太阳光而呈黑色。绿叶拿到暗室的红光下观察时变成了黑色,是因为红光源中没有绿光成分,树叶吸收了全部红光而呈黑色。附录A 模拟电视基础 3.标准光源标准光源 物体的颜色也受光源的影响。

4、在彩色电视系统中,用标准白光作为照明光源。绝对黑体所辐射的光谱与它的温度密切相关。绝对黑体的温度越高,辐射的光谱中蓝色成分越多,红色成分越少。标准光源的可见光谱与某温度的绝对黑体辐射的可见光谱相同或相近时,绝对黑体的温度称为该光源的色温,单位以绝对温度开氏度(K)表示。色温与光源的实际温度无关,彩色电视机荧光屏的实际温度为常温,而其白场色温是6500 K。附录A 模拟电视基础 常用的标准白光有A、B、C、D和E共5种光源。A光源是色温为2854 K的白光,光谱偏红,相当于充气钨丝白炽灯所产生的光;B光源是色温为4874 K的白光,近似于中午直射的太阳光;C光源是色温为6774 K的白光,相当于

5、白天的自然光,是NTSC制彩色电视的白光标准光源;D光源是色温为6504 K的白光,相当于白天的平均光照,是PAL制彩色电视的白光标准光源;E光源是色温为5500 K的等能量白光(E白),它是为简化色度学计算而采用的一种假想光源,实际并不存在。电视演播室内的卤钨灯光源的色温为3200 K,有体积小、亮度高、寿命长、色温稳定等优点。附录A 模拟电视基础 A.1.2 人眼的视觉特性人眼的视觉特性 1.视觉灵敏度视觉灵敏度 人眼对不同波长光的灵敏度是不同的。经过对各种类型人的视觉灵敏度实验进行统计,国际照明委员会推荐标准视敏度曲线,也称相对视敏函数曲线,如附图A-2中的V()。该曲线表明了具有相等辐

6、射能量、不同波长的光作用于人眼时,引起的亮度感觉是不一样的。人眼最敏感的光波长为555 nm,颜色是草绿色,这一区域的颜色,人眼看起来省力,不易疲劳。在555 nm两侧,随着波长的增加或减少,亮度感觉逐渐降低。在可见光谱范围之外,辐射能量再大,人眼也是没有亮度感觉的。附录A 模拟电视基础 附图A-2 标准视敏度曲线400500600700相对视敏度1.00.80.60.40.2020 VB()V()VG()VR()波长/nm附录A 模拟电视基础 2.彩色视觉彩色视觉 人眼视网膜上有大量的光敏细胞,按形状分为杆状细胞和锥状细胞。杆状细胞灵敏度很高,但对彩色不敏感,人的夜间视觉主要靠它起作用,因此

7、,在暗处只能看到黑白形象而无法辨别颜色。锥状细胞既可辨别光的强弱,又可辨别颜色,白天视觉主要由它来完成。关于彩色视觉,科学家曾做过大量实验并提出了视觉三色原理的假设,认为锥状细胞又可分成三类,分别称为红敏细胞、绿敏细胞和蓝敏细胞,它们各自的相对视敏函数曲线分别为VR()、VG()和VB(),如附图A-2所示,其峰值分别在580 nm、540 nm、440 nm处。附录A 模拟电视基础 VB()曲线幅度很低,已将其放大20倍。三条曲线的总和等于相对视敏函数曲线VV()。三条曲线是部分交叉重叠的,很多单色光同时处于两条曲线之下,例如,600 nm的单色黄光就处在VR()和VG()曲线之下,所以60

8、0 nm的单色黄光既激励了红敏细胞,又激励了绿敏细胞,引起混合的感觉。当混合红绿光同时作用于视网膜时,分别使红敏细胞和绿敏细胞同时受激励,只要混合光的比例适当,所引起的彩色感觉可以与单色黄光引起的彩色感觉完全相同。附录A 模拟电视基础 不同波长的光对三种细胞的刺激量是不同的,产生的彩色视觉也各异,人眼因此能分辨出五光十色的颜色。在电视技术中利用了这一原理,在图像重现时,不是重现原来景物的光谱分布,而是利用三种相似于红、绿、蓝锥状细胞特性曲线的三种光源进行配色,使其在色感上得到相同的效果。附录A 模拟电视基础 3.分辨力分辨力 分辨力是指人眼在观看景物时对细节的分辨能力。对人眼进行分辨力测试的方

9、法如附图A-3所示,在眼睛的正前方放一块白色的屏幕,屏幕上面有两个相距很近的小黑点,逐渐增加画面与眼睛之间的距离,当距离增加到一定长度时,人眼就分辨不出有两个黑点存在,感觉只有一个黑点,这说明眼睛分辨景物细节的能力有一个极限值,我们将这种分辨细节的能力称为人眼的分辨力或视觉锐度。分辨力的定义是:眼睛对被观察物上相邻两点之间能分辨的最小距离所对应的视角的倒数,即 1分辨力(A-1)附录A 模拟电视基础 附图A-3 人眼的分辩力dL附录A 模拟电视基础 如附图A-3所示,用L表示眼睛与图像之间的距离,d表示能分辨的两点间的最小距离,则有)(3438603602单位为LdLd(A-2)人眼的最小视角

10、取决于相邻的视敏细胞之间的距离。对于正常视力的人,在中等亮度情况下观看静止图像时,为11.5。分辨力在很大程度上取决于景物细节的亮度和对比度,当亮度很低时,锥状细胞不起作用,视力很差;当亮度过大时,由于眩目现象,视力反而有所下降。细节对比度越小,分辨力越低。在观看运动物体时,分辨力更低。附录A 模拟电视基础 人眼对彩色细节的分辨力比对黑白细节的分辨力低。例如,黑白相间的等宽条子,相隔一定距离观看时,刚能分辨出黑白差别,如果用红绿相间的同等宽度条子替换它们而其它条件不变,人眼会分辨不出红绿之间的差别,感觉是一片黄色。实验还证明,人眼对不同彩色的分辨力也各不相同。如果眼睛对黑白细节的分辨力定义为1

11、00%,则实验测得人眼对黑绿、黑红、黑蓝、红绿、红蓝、绿蓝细节的相对分辨力为94%、90%、26%、40%、23%、19%。因为人眼对彩色细节分辨能力较差,所以在彩色电视系统中传送彩色图像时,只传送黑白图像细节,而不传送彩色细节,这样可减少色信号的带宽,这就是大面积着色原理的依据。附录A 模拟电视基础 4.视觉惰性视觉惰性 人眼的亮度感觉总是滞后于实际亮度的,这一特性称为视觉惰性或视觉暂留。附图A-4(a)表示作用于人眼的光脉冲亮度。附图A-4(b)表示这个光脉冲造成的主观亮度感觉,它滞后于实际的光脉冲。光脉冲消失后,亮度感觉还要过一段时间才能消失。附图A-4(b)中的t1t2就是视觉暂留时间

12、。在中等亮度的光刺激下,视力正常的人的视觉暂留时间约为0.1 s。附录A 模拟电视基础 附图A-4 人眼的视觉惰性作用于人眼的光脉冲亮度(b)主观光脉冲亮度(a)(b)t1t2tt视觉亮度附录A 模拟电视基础 人眼受到频率较低的周期性的光脉冲刺激时,会感到一亮一暗的闪烁现象。如果将重复频率提高到某个一定值以上,由于视觉惰性,眼睛就感觉不到闪烁了。不引起闪烁感觉的最低重复频率,称为临界闪烁频率。临界闪烁频率与很多因素有关,其中最重要的是光脉冲亮度,随着光脉冲亮度的提高,临界闪烁频率也将提高。临界闪烁频率还与亮度的变化幅度有关。亮度变化幅度越大,临界闪烁频率越高。人眼的临界闪烁频率约为46 Hz。

13、对于重复频率在临界闪烁频率以上的光脉冲,人眼不再感觉到闪烁,这时主观感觉的亮度等于光脉冲亮度的平均值。附录A 模拟电视基础 A.1.3 色度学色度学 1.彩色三要素彩色三要素 描述一种色彩时需要用到亮度、色调和饱和度三个基本参量,这三个参量称为彩色三要素。亮度反映光的明亮程度。同色光辐射的功率越大,亮度越高。不发光物体的亮度取决于它所反射的光功率的大小。若照射物体的光强度不变,物体的反射性能越好,物体就越明亮。对于一定的物体,照射光越强,物体就越明亮。色调反映彩色的类别,例如红、橙、黄、绿、青、蓝、紫等不同颜色。发光物体的色调由光的波长决定,不发光物体的色调由照明光源和该物体的反射或透射特性共

14、同决定。附录A 模拟电视基础 色饱和度反映彩色光的深浅程度。深红、粉红是两种不同饱和度的红色,深红色饱和度高,粉红色饱和度低。饱和度与彩色光中的白光比例有关,白光比例越大,饱和度越低。高饱和度的彩色光可加白光来冲淡成低饱和度的彩色光。饱和度最高的称为纯色或饱和色。谱色光就是纯色光,其饱和度为100%。饱和度低于100%的彩色称为非饱和色。日常生活中所见到的大多数彩色是非饱和色。白光的饱和度为0。色饱和度和色调合称为色度,它表示彩色的种类和彩色的深浅程度。附录A 模拟电视基础 2.三基色原理三基色原理 根据人眼的视觉特性,在电视机中重现图像时并不要求完全重现原景物反射或透射光的光谱成分,而只需获

15、得与原景物相同的彩色感觉即可。因此,仿效人眼的三种锥状细胞可以任选三种基色,三种基色必须是相互独立的,即任一种基色都不能由其它两种基色混合得到,将它们按不同比例进行组合,可得到自然界中绝大多数的彩色。具有这种特性的三个单色光叫基色光,这三种颜色叫三基色。总结出的三基色原理是:自然界中绝大多数的彩色可以分解为三基色,三基色按一定比例混合,可得到自然界中绝大多数的彩色。混合色的色调和饱和度由三基色的混合比例决定,混合色的亮度等于三种基色亮度之和。附录A 模拟电视基础 因为人眼的三种锥状细胞对红光、绿光和蓝光最敏感,所以在红色、绿色和蓝色光谱区中选择三个基色按适当比例混色可得到较多的彩色。在彩色电视

16、中,选用了红、绿、蓝作为三基色,分别用R、G、B来表示。国际照明委员会(CIE)选定了红基色的波长为700 nm,绿基色的波长为546.1 nm,蓝基色的波长为435.8 nm。附录A 模拟电视基础 三基色原理是彩色电视技术的基础。摄像机把图像分解成三基色信号,电视机又用三基色信号配出原图像的色彩,图像信息的传送变得容易实现。三基色光相混合得到的彩色光的亮度 等于三种基色亮度之和,这种混色称为相加混色。将三束等强度(相同单位量)的红、绿、蓝圆形单色光同时投射到白色屏幕上时,呈现出的三基色圆图混合规律如附图A-5所示,也可描述如下:红色+绿色=黄色 绿色+蓝色=青色 蓝色+红色=紫色 红色+绿色

17、+蓝色=白色 附录A 模拟电视基础 附图A-5 相加混色 红绿蓝黄紫青白附录A 模拟电视基础 适当改变三束光的强度,可以得到所有自然界中常见的彩色光。通过实验还可得到:红色+青色=白色 绿色+紫色=白色 蓝色+黄色=白色 当两种颜色混合得到白色时,这两种颜色称为互补色。红与青互为补色,绿与紫互为补色,蓝与黄互为补色。附录A 模拟电视基础 在彩色电视技术中,常用以下两种简接相加混色法:(1)空间混色法:同时将三种基色光分别投射到同一表面上彼此相距很近的三点上,由于人眼的分辨力有限,能产生三种基色光混合的色彩感觉。空间混色法是同时制彩色电视的基础。(2)时间混色法:将三种基色光轮流投射到同一表面上

18、,只要轮换速度足够快,由于视觉惰性,就能得到相加混色的效果。时间混色法是顺序制彩色电视的基础。附录A 模拟电视基础 3.颜色的度量颜色的度量 1)配色实验 给定一种彩色光,可通过配色实验来确定其所含三基色的比例,配色实验装置如附图A-6所示。实验装置是由两块互成直角的理想白板将观察者的视场一分为二,在一块白板上投射待配色,在另一块白板上投射三基色。调节三基色光的强度,直至两块白板上的彩色光引起的视觉效果完全相同。记下三基色调节器上的光通量读数,便可写出配色方程:FR(R)+G(G)+B(B)附录A 模拟电视基础 附图A-6 配色实验 光量调节三基色光源RGB待配彩色视场附录A 模拟电视基础 式

19、中:F为任意一个彩色光;(R)、(G)、(B)为三基色单位量;R、G、B为三色分布系数。要配出彩色量F,必须将R单位的红基色、G单位的绿基色和B单位的蓝基色加以混合,R、G、B的比例关系确定了所配彩色光的色度(包含色调和饱和度),R、G、B的数值确定了所配彩色光的光通量(亮度)。R(R)、G(G)、B(B)分别代表彩色量F中所含三基色的光通量成分,又称彩色分量。配成标准白光E白所需红、绿、蓝三基色的光通量比为1 4.5907 0.0601。为了简化计算,规定红基色光单位量的光通量为1 lm,则绿基色光和蓝基色光单位量的光通量分别为4.5907 lm和0.0601 lm。lm是光通量的单位流明。

20、附录A 模拟电视基础 2)XYZ制色度图 配色实验的物理意义很明确,但进行定量计算却比较复杂,实际使用很不方便,为此进行了坐标变换:(X)=0.4185(R)-0.0912(G)+0.0009(B)(Y)=-0.1587(R)+0.2524(G)+0.0025(B)(Z)=-0.0828(R)+0.0157(G)+0.1786(B)在XYZ计色制中,任何一种彩色的配色方程式可表示为 F=X(X)+Y(Y)+Z(Z)(A-4)(A-5)式中:X、Y、Z为标准三色系数;(X)、(Y)、(Z)为标准三基色单位。附录A 模拟电视基础 在XYZ计色制中标准三色系数均为正数,系数Y的数值等于合成彩色光的全

21、部亮度,系数X、Z不包含亮度,合成彩色光色度仍由X、Y、Z的比值决定。当X=Y=Z时,可配出等能白光E白。色度是由三色系数X、Y、Z的相对值确定的,与X、Y、Z的绝对值无关。如果仅考虑色度值,则可以用三色系数的相对值表示:mzzyxzzmyzyxyymxzyxxxZYXm(A-6)附录A 模拟电视基础 式中:m为色模,表示某彩色光所含标准三基色单位的总量,它与光通量有关,对颜色不发生影响;x、y、z为相对色度系数,又叫色度坐标。由式(A-6)可知:x+y+z=1(A-7)式(A-7)表明,当某一彩色量F的相对色度系数x、y已知时,则z也为已知,即z是一个非独立的参量。这样就可将由配色实验得到的

22、数据,换算成x、y坐标值,并画出其平面图形,即x-y标准色度图,如附图A-7所示。附录A 模拟电视基础 附图A-7 标准色度图和显像三基色 y0.10.20.30.40.50.60.70.80.90.10.30.50.70.9700600620590570550530520510505500490470440E白x0附录A 模拟电视基础 在x-y色度图中,所有光谱色都在所示的舌形曲线上。曲线上各点的单色光既可用一定的波长来标记,也可用色度坐标表示,该曲线亦称为光谱色曲线。舌形曲线下面不是闭合的,用直线连接起来,则自然界中所有实际彩色都包含在这封闭的曲线之内。E白点的坐标为x=1/3、y=1/3

23、,谱色曲线上任意一点与E白点的连线称为等色调线。该线上所有的点都对应同一色调的彩色,线上的点离E白点越近,该点对应的彩色的饱和度就越小。附录A 模拟电视基础 谱色曲线内任意两点表示了两种不同的彩色,这两种彩色的全部混色都在这两点的连线上。合成光的点离这两点的距离与这两种彩色在合成光中的强度成反比。在谱色曲线内,任取三点所对应的彩色作基色混合而成的所有彩色都包含在以这三点为顶点的三角形内。三角形外的彩色不能由此三基色混合得到。因此,彩色电视选择的三基色应在色度图上有尽量大的三角形面积。附录A 模拟电视基础 4.显像三基色和亮度公式显像三基色和亮度公式 1)显像三基色 彩色电视重现图像是靠彩色显像

24、管屏幕上三种荧光粉在电子束轰击下发出的红、绿、蓝三种基色光混合而得到的,这三种基色称为显像三基色。我们希望选出的显像三基色在色度图上的三角形面积尽可能大些,这会使混合出来的色彩更丰富;同时还要求荧光粉的发光效率尽可能高。不同彩色电视制式所选用的显像三基色是不同的,选用的标准白光也不一样。NTSC制和PAL制采用的显像三基色和标准白光的色度坐标如附表A-1所示,它们在色度图中的位置分别见附图A-7中的虚线三角形和实线三角形。附录A 模拟电视基础 附表附表A-1 显像三基色和标准白光的色度坐标显像三基色和标准白光的色度坐标 附录A 模拟电视基础 2)亮度公式 由显像三基色和标准白光的色度坐标经线性

25、矩阵变换可导出NTSC制中显像三基色Re1、Ge1、Be1和X、Y、Z之间的关系式:X=0.607Re1+0.174Ge1+0.200Be1Y=0.299Re1+0.587Ge1+0.114Be1Z=0.000Re1+0.066Ge1+1.116Be1 Y代表彩色的亮度,由显像三基色配出的任意彩色光的亮度为Y=0.299Re1+0.587Ge1+0.114Be1(A-8)(A-9)附录A 模拟电视基础 通常简化为 Y=0.3R+0.59G+0.11B 式(A-10)称为亮度公式。由附表A-1可知,在PAL制彩色电视中,选用的显像三基色和标准白光的色度坐标与NTSC制不一样,因此导出的亮度公式的

26、系数有所不同。但是二者差别不大,所以在PAL制中也采用式(A-10)作为亮度公式。(A-10)附录A 模拟电视基础 A.2 电视图像的传送原理电视图像的传送原理 A.2.1 电视传像原理电视传像原理 1.逐行扫描逐行扫描 电视广播的原理是在电视发送端用摄像器件实现光电转换,在接收端用显像管实现电光转换。荧光粉在电子束的冲击下会发光,将其涂在玻璃屏上可构成电视显像管的荧光屏。荧光屏的发光强弱取决于冲击电子的数量与速度,只要用代表图像的电信号去控制电子束的强弱,再按规定的顺序扫描荧光屏,便能完成由电到光的转换,重现电视图像。显像管中的电子束扫描是通过偏转线圈实现的。附录A 模拟电视基础 假定在水平

27、偏转线圈里通过如附图A-8(a)所示的锯齿形电流,当t1t2期间电流线性增大时,电子束在磁场的作用下从左向右作匀速扫描,这称为行扫描正程。当t2时刻正程结束时,电子束扫到屏幕的最右边。在t2t3期间偏转电流快速线性减小,电子束从右向左迅速扫描,这称为行扫描逆程。当t3 时刻逆程结束时,电子束又回扫到屏幕的最左边。电子束在水平方向往返一次所需的时间为行扫描周期。行扫描周期TH等于行正程时间THF和行逆程时间THR之和。行扫描周期的倒数就是行扫描频率fH。附录A 模拟电视基础 假定在垂直偏转线圈里通过如附图A-8(b)所示的锯齿形电流,电子束在磁场的作用下将自上而下,再自下而上扫描,形成帧扫描的正

28、程和逆程,帧扫描的周期TZ等于帧正程时间TZF和帧逆程时间TZR之和。帧扫描周期的倒数就是帧扫描频率fZ。帧扫描频率fZ远低于行扫描频率fH。如果把行偏转电流iH和帧偏转电流iZ同时分别输入水平和垂直偏转线圈里,则电子束同时沿水平方向和垂直方向扫描,在屏幕上显示出如附图A-8(c)所示的光栅。由于行扫描时间比帧扫描时间短得多,且整个屏幕高度有600多条扫描线,因此电视机的扫描线看起来是水平直线。这种电子束从图像上端开始,从左到右、从上到下以均匀速度依照顺序一行紧跟一行地扫完全帧画面的扫描方式,称为逐行扫描。附录A 模拟电视基础 附图A-8 逐行扫描电流和光栅(a)行扫描电流;(b)帧扫描电流;

29、(c)扫描光栅 tt1t2t4t3iHTHFTHRTH(a)TZFizTZRTZt5t6t0(b)(c)t0t6t1t3t2t4t5t附录A 模拟电视基础 逆程扫描线会降低图像质量,故在行、帧逆程期间可用消隐脉冲截止扫描电子束,使逆程扫描线消失。为了提高效率,正程扫描时间应占整个扫描周期的大部分。电视标准规定了行逆程系数和帧逆程系数:%8%18ZZRHHRTTTT在逐行扫描中,所有帧的光栅都应相互重合,这就要求帧扫描周期TZ是行扫描周期TH的整数倍,也就是每帧的扫描行数Z为整数,TZ=ZTH,fH=ZfZ。附录A 模拟电视基础 2.隔行扫描隔行扫描 电视图像为了保证有足够的清晰度,扫描行数需在

30、600左右;为了保证不产生闪烁感觉,帧扫描频率应在48 Hz以上。这就使图像信号的频带很宽,设备很复杂。隔行扫描在不增加带宽的前提下,保证有足够的清晰度又避免了闪烁现象。隔行扫描就是把一帧图像分成两场来扫:第一场扫描1、3、5等奇数行;称为奇数场;第二场扫描2、4、6等偶数行,称为偶数场。每帧图像经过两场扫描后,所有像素全部被扫描完。偶数场扫描线正好嵌在奇数场扫描线的中间,如附图A-9(c)所示。附录A 模拟电视基础 附图A-9 隔行扫描电流和光栅(a)行扫描电流;(b)场扫描电流;(c)扫描光栅 iH123456 8 10 12 14 16 187 9 11 13 15 17(a)iVt0(

31、b)t(c)111313515717910212414616818t附录A 模拟电视基础 3.CCD摄像机的光电转换摄像机的光电转换 1)势阱 附图A-10所示的是由P型半导体、二氧化硅绝缘层和金属电极组成的MOS结构。在电极上未加电压之前,如附图A-10(a)所示,P型半导体中的空穴均匀分布;当栅极G上加正电压UG时,栅极下面的空穴受到排斥,从而形成一个耗尽层,见附图A-10(b);当UG数值高于某一临界值Uth时,在半导体内靠近绝缘层的界面处将有自由电子出现,形成层很薄的反型层,反型层中电子密度很高,通常称为沟道,如附图A-10(c)所示。这种MOS电极结构与MOS场效应管的不同之处是没有

32、源极和漏极,因此即使栅极电压脉冲式突变到高于临界值Uth时,反型层也不能立即形成,这时,耗尽层将进一步向半导体深处延伸。附录A 模拟电视基础 附图A-10 MOS结构与势阱(a)UG=0;(b)UGUth耗尽层金属电极SiO2P型半导体基片G反型层MOS(a)(b)(c)附录A 模拟电视基础 2)电荷的转移(耦合)附图A-11是三个电荷包在四相时钟14驱动下向前转移的示意图。附图A-11上部是四相时钟14的波形,附图A-11下部第一行是电极,所有标志为1的电极应全部连在一起接到1波形的驱动线上,标志为2的电极应全部连在一起接到2波形的驱动线上,所有标志为3的电极应全部连在一起接到3波形的驱动线

33、上,标志为4的电极应全部连在一起接到4波形的驱动线上。第二行是t1时刻三个电荷包的位置,它们由四相时钟驱动,逐步向右移动。t2t6各个时刻的电荷包位置如下面各行所示。CCD中的电荷就这样在四相时钟的驱动下向前转移。附录A 模拟电视基础 附图A-11 三个电荷包在时钟14的驱动下向前转移 1234t1t2 t3t4 t5t621342134213421t1t2t3t4t5t6附录A 模拟电视基础 3)面阵CCD的三种基本型式 (1)FT型(Frame Transfer,帧转移型)。帧转移型面阵CCD如附图A-12(a)所示,摄像器件分为光敏成像区和存储区两部分。场正程期间,在光敏成像区每个单元积

34、累信号电荷;在场消隐期间由垂直CCD移位寄存器把信号电荷全部高速传送到存储区,存储区的信号在每一行消稳期间向前推进一行;在行正程期由水平CCD移位寄存器逐像素读出。帧转移型CCD在帧转移期间,全部电荷在成像区移动,一列中的每一个像素都被这列中后面的其它像素的光线照射过,因此景物中的亮点就会在图像上产生一条垂直亮带,这个现象称为拖尾。附录A 模拟电视基础 (2)IT型(Interline Transfer,行间转移型)。行间转移型面阵CCD如附图A-12(b)所示。摄像器件的光敏成像部分和存储部分以垂直列相间的形式组合。场正程期间在成像列积累信号电荷,场消隐期间一次转移到相应的存储列上。存储列的

35、信号在每一行消隐期间沿垂直方向下移一个单元,在行正程期间由水平CCD移位寄存器逐像素读出信号。行间转移型CCD的电荷包在存储列中每行时间移动一行距离,经过一场才能将全部电荷移出,虽然存储列采用光屏蔽,但斜射光和多次反射光仍会形成假信号而产生拖尾。附录A 模拟电视基础 (3)FIT型(帧行间转移型)。帧行间转移型面阵CCD如附图A-12(c)所示。成像区与行间转移型CCD相似,成像区与存储区的关系与帧转移型CCD相似。电荷包从成像区向存储区转移是在场消隐期间进行的,而且是在光屏蔽的存储列中进行的,拖尾基本上不存在。附录A 模拟电视基础 附图A-12 面阵CCD的三种基本型(a)帧转移型面阵CCD

36、;(b)行间转移型面阵CCD;(c)帧行间转移型面阵CCD 光敏区存储区(a)(b)(c)附录A 模拟电视基础 A.2.2 电视图像的基本参数电视图像的基本参数 1.图像宽高比图像宽高比 图像宽高比也称幅型比。人眼的视觉最清楚的范围是垂直视角为15、水平视角为20的一个矩形视野,因而确定电视接收机的屏幕是宽高比为4 3的矩形。矩形屏幕的大小用对角线长度表示,并习惯用英寸作单位,一般家用电视机有35 cm(14英寸)、46 cm(18英寸)、51 cm(20英寸)、74 cm(29英寸)等规格。为增强临场感与真实感,还可加大幅型比。高清晰度电视或大屏幕高质量电视要求水平视角加大,观看距离约为屏高

37、的三倍,幅型比定为16 9。附录A 模拟电视基础 2.场频场频 选择场频时主要应考虑不能出现光栅闪烁现象。人眼的临界闪烁频率与屏幕亮度、图像内容、观看条件以及荧光粉的余辉时间等因素有关。为不引起人眼的闪烁感觉,场频应高于48 Hz。在我国的电视标准中,场频选为50 Hz。随着屏幕亮度的提高,屏幕尺寸的加大,观看距离变近,场频应相应提高。附录A 模拟电视基础 3.行数行数 设Z为每帧扫描行数,h为屏幕高度,则两点间最小距离d=h/Z,代入公式(A-2)得 LhZ3438取标准视距L为屏幕高度h的46倍,并取为1,则可算得应该取的扫描行数为860570行之间。目前世界上采用的标准扫描行数有625行

38、和525行。我国采用625行。在20世纪50年代,电视机以30 cm(12英寸)和35 cm(14英寸)为主,所以行数选择了625行。随着目前大屏幕电视的发展,625行的标准明显偏低。在高清晰度电视中,为了获得临场感和真实感,扫描行数已增加到1200行以上。附录A 模拟电视基础 场频确定为fV=50 Hz,由于采用隔行扫描,则帧频fZ=25 Hz,也就是一帧扫描时间TZ=40 ms。当扫描行数选定为Z=625后,行扫描时间TH=TZ/Z=40 ms/625=64 s,行频fH=fZZ=25 Hz625=15 625 Hz。附录A 模拟电视基础 A.2.3 黑白全电视信号的组成黑白全电视信号的组

39、成 1.图像信号图像信号 CCD传感器的每个像素的输出波形只在一部分时间内是图像信号,其余时间内是复位电平和干扰。为了取出图像信号并消除干扰,要采用取样保持电路。每个像素信号被取样后,就用一个电容把信号保持下来,直到取样下一个像素信号。图像信号电压的高低反映了实际景物的亮度。图像内容是随机的,相应的电压波形也是随机的。如果摄取一幅从白到黑有10个灰度等级的竖条图像,每行产生的图像信号电压波形就是从低到高十个阶梯。纯白对应的电平最低,全黑对应的电平最高。这种信号电平与图像亮度成反比的图像信号称为负极性图像信号。反之,信号电平与图像亮度成正比的图像信号称为正极性图像信号。附录A 模拟电视基础 2.

40、消隐信号和同步信号消隐信号和同步信号 显像管电子束在行、场扫描正程期间重现图像信号,在行、场扫描逆程形成回扫线。所以摄像机在行、场扫描逆程发出消隐信号令电视接收机显像管电子束截止,消除显像管在行、场扫描逆程产生的回扫线。消隐信号分为行消隐信号和场消隐信号。行消隐信号的宽度为12 s,场消隐信号宽度为25TH+12 s。行消隐信号和场消隐信号合在一起称为复合消隐信号。附录A 模拟电视基础 电视接收机显像管要正确地重现摄像机摄取的图像,接收机与摄像机的扫描必须同步,即扫描的频率和相位要完全相同。摄像机每读出一行图像信号后,送出一个行同步信号,接收机利用这个行同步信号去控制本机的行扫描逆程起点,行同

41、步脉冲的前沿表示上一行结束、下一行开始。行同步信号的脉冲宽度为4.7 s,行同步脉冲前沿滞后行消隐脉冲前沿1.5 s,如附图A-13(a)所示。附录A 模拟电视基础 附图A-13 行同步信号和复合同步信号(a)行同步信号;(b)复合同步信号 奇数场奇数场1.5 s4.7 s12 s(a)(b)2.5 TH2.5 TH偶数场附录A 模拟电视基础 3.开槽脉冲和均衡脉冲开槽脉冲和均衡脉冲 在场同步信号期间如果行同步信号中断,则容易造成行不同步,为了保持行同步信号的连续性,保证场同步期间行扫描稳定,在场同步信号内开了五个小凹槽,形成五个齿脉冲,利用凹槽的后沿作为行同步信号的前沿。凹槽叫做开槽脉冲,其

42、宽度为4.7 s,其间隔等于TH2;齿脉冲宽度为27.3 s,如附图A-14所示。附录A 模拟电视基础 附图A-14 黑白全电视信号(a)奇数场信号;(b)偶数场信号 偶数场奇数场前均衡脉冲场消隐脉冲场同步脉冲后均衡脉冲622623624625123452324(a)奇数场偶数场前均衡脉冲场同步脉冲后均衡脉冲311312317313314315316(b)310318场消隐脉冲336附录A 模拟电视基础 4.全电视信号全电视信号 黑白全电视信号由图像信号、消隐信号和同步信号叠加而成,如附图A-14所示。同步脉冲叠加在消隐脉冲之上,消隐脉冲的作用是关闭电子束,消除回扫线。消隐电平相当于图像信号的

43、黑色电平,同步脉冲电平比消隐电平还高,不会在接收机屏幕上显示出来。因为同步脉冲电平高,所以可以把同步脉冲切割出来,去控制扫描振荡器。同步脉冲的前沿是扫描逆程开始的时间,消隐脉冲的前沿比同步脉冲提前一点可以确保逆程被完全消隐掉。全电视信号的幅度比例按标准规定是以同步信号电平为100%,黑电平与消隐电平为75%,白电平为10%12.5%。图像信号介于白电平和黑电平之间,统称为灰色电平。附录A 模拟电视基础 A.3 彩色电视信号的传输彩色电视信号的传输 A.3.1 彩色电视信号的兼容问题彩色电视信号的兼容问题 1.信号选取信号选取 要做到兼容,必须对由CCD光电传感器输出的R、G、B三个基色信号进行

44、处理。首先用一个编码矩阵电路根据Y=0.30R+0.59G+0.11B的亮度公式编出一个亮度信号和R-Y、B-Y两个色差信号:R-Y=R-(0.30R+0.59G+0.11B)=0.70R-0.59G-0.11B B-Y=B-(0.30R+0.59G+0.11B)=-0.30R-0.59G+0.89B (A-11)(A-12)附录A 模拟电视基础 用色差信号传送色度信号具有以下优点:(1)可减少色度信号对亮度信号的干扰。当传送黑白图像时,R=G=B,两个色差信号R-Y和B-Y均为零,不会对亮度信号产生干扰。(2)能够实现亮度恒定原理。即重现图像的亮度只由传送亮度信息的亮度信号决定。(3)可节省

45、色度信号的发射能量。在彩色图像中,大部分像素接近于白色或灰色,它们的色差信号为零,小部分彩色像素才有色差信号,因此,发射色差信号比发射R、G、B信号需要的发射能量小。附录A 模拟电视基础 2.频带压缩频带压缩 人眼对彩色细节的分辨力差,在传送彩色图像时只要传送一幅粗线条大面积的彩色图像配上亮度细节就可以了,没有必要传送彩色细节,这称为大面积着色原理。我国电视标准规定,亮度信号带宽为06 MHz,色度信号带宽为01.3 MHz。附录A 模拟电视基础 3.频谱交错频谱交错 彩色电视采用和黑白电视相同的带宽,用三基色信号形成亮度信号和两个色差信号后,都放在06 MHz的频带内用一个通道传送。在06

46、MHz频带内先选择一个频率,称为彩色副载波,用两个色差信号对彩色副载波进行调制,调制后的信号称为色度信号。将得到的色度信号与亮度信号、同步信号叠加为彩色全电视信号,再去调制图像载波,称为二次调制。二次调制后的射频信号经功率放大后发射出去。附录A 模拟电视基础 由于相邻行图像信号的相关性很强和采用周期性扫描,因此黑白电视信号(亮度信号)的频谱结构是线状离散谱。亮度信号虽然占据了06 MHz的频带宽度,但并未占满整个6 MHz的带宽。亮度信号的能量只集中在行频fH及其谐波nfH附近很窄的范围内,且随谐波次数的升高,能量逐渐下降。在(n-1/2)fH附近没有亮度信号能量,留有较大的空隙,如附图A-1

47、5(a)所示。附图A-15(b)是将nfH附近的一簇谱线放大,可以看出在行频主谱线两侧有以帧频、场频为间隔的副谱线。当图像活动加快时,各副谱线之间的空隙被填满,但在(n-1/2)fH附近仍有较大的空隙,可以将色度信号的频谱插在亮度信号的频谱空隙中间,再用一个6 MHz带宽的通道同时传送亮度信号和色度信号,这种方法称为频谱交错或频谱间置。附录A 模拟电视基础 附图A-15 亮度信号频谱图(a)以行频为间隔的谱线群;(b)每一谱线群结构 fH2fH3fH4fH(a)nfH150nfH100nfH50nfHnfH50nfH100nfH150ff(b)2525附录A 模拟电视基础 色差信号有与亮度信号

48、相同的频谱结构,压缩后占据较窄的频带,如附图A-16(a)所示,它也是以行频为间隔的谱线群结构。副载波经平衡调幅形成色度信号后发生了频谱迁移,各谱线群出现在fSCnfH处,如附图A-16(b)所示。只要选用副载频为半行频的奇数倍,即fSC=(n-1/2)fH,就能将色度信号正好插在亮度信号频谱的空隙间,如附图A-16(c)所示。附录A 模拟电视基础 附图A-16 频谱交错(a)色差信号频谱;(b)色度信号频谱;(c)频谱交错 fH2fH3fH4fHfffSC 3fHfSC fHfSC fHfSC3fHfSCfSCf(a)(b)(c)fSC 3fHfSC fHfSC fHfSC3fH附录A 模拟

49、电视基础 A.3.2 NTSC制制 1.正交平衡调幅正交平衡调幅 平衡调幅又称为抑制载波调幅。抑制载波调幅可以抑制色度信号对亮度信号的干扰并节省发射功率。设用色差信号vR-Y=(R-Y)cost对载波vSC=VSCcosSCt进行调幅,则调幅后信号的数学表达式为 tmtmtVvSCSCSCSCAM)cos(2)cos(2cos(A-13)式中,m=(R-Y)VSC。附录A 模拟电视基础 式(A-13)表明调幅波包含了三个频率:载波频率SC和两个边频频率SC。因为载频SC上不带任何信息,所以可以把载频抑制掉以节省发射功率。载频抑制后成为平衡调幅波,它的数学表达式为 ttYRttmVtmtmVvS

50、CSCSCSCcoscos)(coscos)cos(2)cos(2SCSCBM(A-14)式(A-14)表明用一个乘法器将色差信号与载波相乘就可以得到平衡调幅波,如附图A-17所示。附录A 模拟电视基础 附图A-17 平衡调幅波(a)色差信号(调制信号);(b)副载波信号;(c)平衡调幅波(a)0.8900.30.590.590.30.890(b)(c)1800.30.59 0.590.30.89018001800B YsinsctB Ysinsct00.89附录A 模拟电视基础 平衡调幅波有如下特点:(1)平衡调幅波不含载波分量。(2)平衡调幅波的极性由调制信号和载波的极性共同决定,如两者之

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(数字电视技术附录A课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|