1、 如何揭示肿瘤发生的遗传机制呢?如何揭示肿瘤发生的遗传机制呢?遗传学家与临床肿瘤学家们从(群体、遗传学家与临床肿瘤学家们从(群体、细胞、生化、免疫)遗传学和分子遗传学细胞、生化、免疫)遗传学和分子遗传学不同角度探讨肿瘤与遗传的关系,就逐渐不同角度探讨肿瘤与遗传的关系,就逐渐形成了一门新学科形成了一门新学科癌分子遗传学。癌分子遗传学。简言之,简言之,就是应用遗传学的基本原理、就是应用遗传学的基本原理、方法研究肿瘤的发生、发展与遗传的关系方法研究肿瘤的发生、发展与遗传的关系及规律,揭示肿瘤发生机理。及规律,揭示肿瘤发生机理。2 2、癌与肿瘤的概念癌与肿瘤的概念 单细胞生物为了生长,必须对环境单细胞
2、生物为了生长,必须对环境的变化产生反应,细胞为了营养的来源的变化产生反应,细胞为了营养的来源和生长、分裂,与周围的细胞竞争,直和生长、分裂,与周围的细胞竞争,直至营养供应被耗尽。至营养供应被耗尽。进化创造了多细胞生物进化创造了多细胞生物多细胞多细胞机体机体,高等生物。,高等生物。患者表现为青少年时结肠和直肠有多发性息肉,继发性恶变,90%未经治疗的患者死于结肠癌。如何解释同一种肿瘤既有遗传型的又 有散发型,而且发病年龄不同哪?常见于儿童的恶性胚胎瘤,起源 于神经脊,并发N纤维瘤、N节瘤、嗜铬细胞瘤等。P53 失 控个体在易感状态下如再发生体细胞突变,突变的细胞容易转化为肿瘤细胞。C、MDM2癌
3、基因与pRb结合并抑制pRb,而有利细胞周期进展。鸟类白细胞增生病毒在设计RNAi实验时,可以先在以下网站进行目标序列的筛选:Stolet和Shimizu微细胞转移实验这些机制在疾病治疗中的意义等等。发病早 发病晚体细胞突变和克隆选择模式判定,肿瘤在组成上是单克隆。以sis为代表的 生长因子类l组织培养中的正常细胞需要外源性生长因子,使得细胞得以增殖。细胞凋亡在肿瘤和其它疾病中具有重要的意义。Bcl2 Cytoplasm Upstream inhibitor of重要Gene+产物 细胞周期调控。首次在正常细胞中发现具有转化潜能的基因-细胞癌基因。Mutl PMS2 7p22 5%例:90%以
4、上的CML,t(9;22),形成嵌合基因BCRABL嵌合基因所编码的酪氨酸激酶,对正常控制无应答反应 良、恶性肿瘤的基本区别:良、恶性肿瘤的基本区别:肿瘤是由连续无休止生长,且分化差的细胞肿瘤是由连续无休止生长,且分化差的细胞组成,一般有良、恶性之分。组成,一般有良、恶性之分。1 1)良性肿瘤的特征(异形性与周围组织差异不良性肿瘤的特征(异形性与周围组织差异不显著)显著);2)2)细胞被周围正常组织所局限,常有一层纤维结细胞被周围正常组织所局限,常有一层纤维结缔组织包围;缔组织包围;3 3)生长缓慢,呈膨胀性,对周围组织不具侵袭生长缓慢,呈膨胀性,对周围组织不具侵袭破坏性破坏性,不发生远处转移
5、。不发生远处转移。所有生物生存于自然界中和环境有着所有生物生存于自然界中和环境有着千丝万缕的联系,密不可分,人们所处千丝万缕的联系,密不可分,人们所处的环境之中有:的环境之中有:应用反义核酸治疗方法,人工合成反义DNA/RNA 抑制端粒酶的作用。线粒体在细胞凋亡中的作用包括:释放Caspases激活因子如Cyto-c;第三 在罕见的肿瘤特异性综合征中,肿瘤发证明缺乏p53的细胞不能进行凋亡。Mut S易患急性白血病,高1520倍.某些肿瘤是按孟德尔方式遗传的,亦即单基因的异常决定的,它们通常以常染色体显性遗传方式传递,常为双侧性,多发性,发病早于散发型,具有不同程度的恶变倾向。mRNAMutS
6、肿瘤细胞遗传学研究表明,大多数肿瘤都存在染色体数目和结构异常,其随机改变反映了基因组不稳定性。80年代末期开始成为肿瘤病因学、病理学研究热点,人们对细胞凋亡的认识逐渐深入,对细胞凋亡发生分子机理的了解越来越透彻,然而也发现这一过程远非原来想象的那样简单,而是包含了复杂的调控机制。引用一个哲学观点,“外因是变化的条件,内因是变化的根椐,外因通过内因而起作用”。第二次突变(体C)另一等位基因突变N T2、肿瘤发病率的种族差异基因,转录本.细胞凋亡进程中重要的执行者Caspases;如癌Gene、肿瘤抑制Gene、增变Gene、肿瘤转移Gene及转移抑制Gene。现已发现100多种 癌基因,如何发现
7、的呢?P53 失 控首次在正常细胞中发现具有转化潜能的基因-细胞癌基因。2)肿瘤转移抑制基因Gene location Exon ORF 产物Apoptosis 复制终止 C过度增殖发病早 发病晚消除:消除由于简单重复序列之间的亚 型 高于正常 20-76倍其结果,同一肿瘤各个细胞的核型常常不完全相同,不仅如此,不同核型的细胞生存、繁殖能力不同,有的在选择过程中逐渐被淘汰,有的则形成增殖优势,因此,细胞群体处于选择之中。组)逆转录病毒。8号染色体上的myc基因易位至14号染色体长臂上IgH基因旁,在B细胞该区是活性转录区,导致myc基因过度表达。干系的染色体数目称众数。细胞增殖失调3)原癌基因
8、激活机制2)简述Knudson二次突变学说又在人和小鼠中发现,nm23基因的表达与乳腺癌等肿瘤的转移密切相关。DNA复制 细胞突变(如;肿瘤细胞遗传学研究表明,大多数肿瘤都存在染色体数目和结构异常,其随机改变反映了基因组不稳定性。近年来研究发现,存在着促进转移的肿瘤转移基因(Tumor metastasis gene)和抑制肿瘤转移的肿瘤转移抑制基因(Tumor metastasis suppressor gene)在癌的演化中,不存在一个不变的突变序列,而可能是每个连续的阶段都有一生长优势上的序列。Bcl2 Cytoplasm Upstream inhibitor of、双亲无病后代则不发病
9、。带正电的DEAE-葡聚糖或polybrene多聚体复合物和带负电的DNA分子使得DNA可以结合在细胞表面。细胞有丝分裂的荧光显微图像pRb降解 病毒蛋白 EIA/SV40T由于克隆演化,具有某些染色体组合的细胞具有选择优势得以增殖。3)生长缓慢,呈膨胀性,对周围组织不具侵袭破坏性,不发生远处转移。常见于儿童的恶性胚胎瘤,起源 于神经脊,并发N纤维瘤、N节瘤、嗜铬细胞瘤等。两性畸形患者即DCC(Deleted in colon cancer)的丢失突变有关。P53 失 控存在于正常细胞中能够抑制细胞恶性转化,对细胞的增殖起负性调节作用的基因,其失活使正常细胞增殖失控,进而转化形成肿瘤细胞。性共
10、济失调 下降 织细胞瘤等Fishel等克隆了人的这一同源基因,Muts,并定位于2P,并迅速鉴定了另三个这样基因。第三 在罕见的肿瘤特异性综合征中,肿瘤发引用一个哲学观点,“外因是变化的条件,内因是变化的根椐,外因通过内因而起作用”。74例HNPCC家系中研究表明,复制差(RER)阳性率高达92%说明MMR Gene 发生突变。视网膜母细胞瘤眼球、视网膜的恶性肿瘤,随血液循环转移,侵入颅内引起死亡。影响端粒长度的因素很多,其中主要有:疾病 染色体异常 易患肿瘤结肠癌的mutator gene。细胞凋亡在肿瘤和其它疾病中具有重要的意义。疾病 染色体异常 易患肿瘤体细胞突变和克隆选择模式判定,肿瘤
11、在组成上是单克隆。重要的特异性标记染色体开展基因治疗的新策略抑制细胞凋亡的CED-9.将氯化钙,RNA(或DNA)和磷酸缓冲液混合,沉淀形成包含DNA且极小的不溶的磷酸钙颗粒。其中一些遗传性肿瘤按照经典的孟德尔方式传递,但在更多情况下人类遗传的只是对肿瘤的易感性,并非亲代把肿瘤直接传给子代,遗传的只是单个基因,它在肿瘤发生上起了重要作用,即易感基因。这种转录后基因沉默机制(post-transcriptional gene silencing,PTGS)被称为RNA干扰(RNAi)。ras基因及产物的调节机制Fanconi 贫血 单体断裂、裂隙、发病早 发病晚1989年从转移性小鼠乳腺癌细胞中
12、分离出一种与转移相关的基因S100A4(又称为CAL、p9ka、mtsI)。转座(transoposition)到活性染色质区而激活细胞凋亡的信号转导途径功能上,激活的Caspases可以水解包括细胞调节、细胞信号转导、DNA修复、组织平衡、细胞存活等环节中重要的蛋白,从而使细胞表现为凋亡特有的形态学及生化特征:细胞皱缩、断裂,染色质聚集,DNA降解,以及随后的凋亡细胞被吞噬细胞迅速地清除等。在设计RNAi实验时,可以先在以下网站进行目标序列的筛选:),在恶性肿瘤中91%端粒酶活性增强。细胞有丝分裂的荧光显微图像细胞有丝分裂的荧光显微图像有丝分裂有丝分裂1 1 有丝分裂有丝分裂2 2 细胞有丝
13、分裂此外,还有:此外,还有:一些学者提出应区别两类染色体畸变一些学者提出应区别两类染色体畸变总之总之肿瘤是由连续无休止生长,且分化差的细胞组成,一般有良、恶性之分。线粒体在细胞凋亡中的重要性线粒体在细胞凋亡中的作用包括:释放Caspases激活因子如Cyto-c;典型的癌家族G家族:历经80余年(18951976),5次调查,传7代共10个支系,842名后裔中分析,符合常染色体显性遗传特点:I、双亲之一是患者;患者表现为青少年时结肠和直肠有多发性息肉,继发性恶变,90%未经治疗的患者死于结肠癌。应用于检测、鉴定TSG。脊椎动物则进化了一整套的基因家族:GDP-RAS 失控端粒被认为是细胞有丝分
14、裂的“生物钟”,随着细胞分裂的不断进行,端粒逐渐缩短。DNA病毒:感染细胞后病毒Gene组整合到宿主细胞Gene组.尽管这些信号以及随后的反应途径多种多样,但现已公认,细胞凋亡后期的共同途径是Caspases的激活。尽管仍有许多问题甚至是关键的问题没有搞清楚,但近几年的研究在凋亡信号转导途径、细胞凋亡的生化反应机制以及细胞凋亡的基因调控等方面都取得了显著的进展。提示:不同种族的差异主要是遗传差异,这种差异在肿瘤发生种起作用遗传因素的作用。NFI发生与NF1肿瘤抑制基因密切相关,NF1 Gene 定位于17q11.综上所述 C癌变还有一些肿瘤既有遗传性的也有散发的。1989年从转移性小鼠乳腺癌细
15、胞中分离出一种与转移相关的基因S100A4(又称为CAL、p9ka、mtsI)。双侧、多瘤 单侧、单瘤神经纤维瘤 N-mycpRb蛋白 pRb蛋白编码Ca2+结合蛋白促进C运动,影响细胞与细胞外基质粘附,改变蛋白水解活性促进转移。BCRBCRABLABL嵌合基因所编码的酪氨酸激酶,对正常控嵌合基因所编码的酪氨酸激酶,对正常控制无应答反应制无应答反应 与与KnodsonKnodson二次打击学说是一致的二次打击学说是一致的,Rb Rb GeneGene缺失或功能丧失,失去对肿瘤细胞的抑缺失或功能丧失,失去对肿瘤细胞的抑制作用,认为制作用,认为Rb Gene Rb Gene 为为TSGTSG。前三
16、种情况(前三种情况(1 1、2 2和和3 3),肿瘤组织中正常等位基因),肿瘤组织中正常等位基因丢失(丢失(A A),这称为杂合性丢失。),这称为杂合性丢失。它的部分作用是调控一组细胞转录因子它的部分作用是调控一组细胞转录因子-E2F-E2F。细胞周期进入。细胞周期进入S S期前(期前(2-4hr2-4hr)pRb pRb 磷酸化而失活,解除对磷酸化而失活,解除对E2FE2F的抑制使的抑制使细胞进入细胞进入S S期。期。A A、停止细胞复制损伤的、停止细胞复制损伤的DNADNA。B B、参于细胞周期、参于细胞周期G1/SG1/S阶段的阶段的CheckpointCheckpoint(细胞缺少(细
17、胞缺少p53p53或含有其突变时,就不能停止或含有其突变时,就不能停止于于G1G1期),而损伤期),而损伤DNADNA的复制可导致遗传的变的复制可导致遗传的变化。化。C C、与细胞死亡有关,调节细胞凋亡。这是、与细胞死亡有关,调节细胞凋亡。这是高水平的细胞结构自然选择的防御。癌的发生高水平的细胞结构自然选择的防御。癌的发生就是这一控制功能的丧失。证明缺乏就是这一控制功能的丧失。证明缺乏p53p53的细的细胞不能进行凋亡。胞不能进行凋亡。现已发现有现已发现有3030多种多种TSGTSG,近年发现的有,近年发现的有FHITFHIT、PTENPTEN(MMAC1MMAC1)等。)等。1293、增变基
18、因、增变基因n增变基因:在确保遗传信息的完整性上起一定作增变基因:在确保遗传信息的完整性上起一定作用,其突变导致用,其突变导致DNADNA复制和修复障碍。复制和修复障碍。n长期以来,肿瘤表现遗传不稳定性:长期以来,肿瘤表现遗传不稳定性:数目异常数目异常 核型异常核型异常 结构异常结构异常 都和增变基因突变相关。都和增变基因突变相关。LOHLOH DNADNA MI MI 130增变基因增变基因 n19931993年年FishelFishel在在E.ColiE.Coli和和yeastyeast中发现中发现,并将并将MutHLSMutHLS基因称为基因称为mutater genemutater g
19、ene。这些基因编。这些基因编码一种错误改正系统码一种错误改正系统-检查检查DNADNA错配错配的碱基对。的碱基对。n增变基因突变会导致增变基因突变会导致10010001001000倍突变率的倍突变率的增加。故现在又称为增加。故现在又称为DNADNA错配修复基因。错配修复基因。nFishelFishel等克隆了人的这一同源基因,等克隆了人的这一同源基因,Muts,Muts,并定位于并定位于2P2P,并迅速鉴定了另三个这样基因。,并迅速鉴定了另三个这样基因。131结肠癌的结肠癌的mutator genemutator gene。E Ecoli coli 人人 染色体的位置染色体的位置%HNPCC
20、%HNPCCMuts MSH2 2P15-P22 50-60%Mutl MLH1 3P21.3 30,40%Mutl PMS1 2p31-p33 5%Mutl PMS2 7p22 5%与与TSGTSG一样,这类基因突变是隐性的,亦需一样,这类基因突变是隐性的,亦需要两次打击机制。要两次打击机制。132 错配修复基因(错配修复基因(m misism match atch r repair gene epair gene,MMRMMR)nDNA错配修复系统(MMR首先是在原核生物中发现)Mut SnMMR系统 Mut L 也称 Mut SLH 途径。MutHn该系统的修复机制主要依赖于Mut S、
21、MutL、MutH,基因所编码的蛋白、酶分子来完成。nMutS其蛋白的作用是识别错配的碱基位点并与 之结合。n而后MutL 和MutH基因产物依次与MutS形成复合物 进行协同作用。133 A G N A T T C G T A MutS Mut H A G N A T T C G T A Mut L134另外,该系统还需要其它酶和因子参与另外,该系统还需要其它酶和因子参与 DNADNA聚合酶聚合酶IIIIII;如:如:DNADNA连接酶;连接酶;单链结合蛋白;单链结合蛋白;外切酶等,从而共同完成修复反应。外切酶等,从而共同完成修复反应。135人类人类MMR系统系统:n现已阐明,人类现已阐明,
22、人类MMRMMR基因编码的错配修复蛋白可基因编码的错配修复蛋白可相互作用,形成一种多聚复合物,参与细胞错相互作用,形成一种多聚复合物,参与细胞错配修复反应。配修复反应。修复:修复修复:修复DNADNA复制过程中出现的碱复制过程中出现的碱 作用作用 基错配。基错配。消除:消除由于简单重复序列之间的消除:消除由于简单重复序列之间的 遗传重组出现的不配对基碱序列。遗传重组出现的不配对基碱序列。136目的目的n从而有效地防止从而有效地防止DNADNA复制差错的产生。复制差错的产生。n人体细胞中人体细胞中DNA DNA 错配修复反应过程依赖错配修复反应过程依赖于几种人类于几种人类MMRMMR基因产物,因
23、此,其中任基因产物,因此,其中任何一种基因发生突变导致其产物的功能何一种基因发生突变导致其产物的功能丧失,将造成丧失,将造成DNADNA错配,修复功能的异常、错配,修复功能的异常、缺陷、或丧失。缺陷、或丧失。137人类人类MMRMMR基因定位:基因定位:Gene location Exon ORF 产物产物 HMSH2 2p16 16 2802bp 934 aa HMLH1 3p21.3 19 2268bp 756 aa HPMS1 2q31-q33?2795bp 932aa HPMS2 2p22?2586bp 862aa 138人类人类MMRMMR系统与肿瘤系统与肿瘤nDNA DNA 错配修
24、复基因的完整性对确保错配修复基因的完整性对确保DNADNA复制的精确性极复制的精确性极为重要为重要。DNA MMRDNA MMR系统系统 GeneGene 突变突变 MMRMMR系统缺陷系统缺陷 修复功能下降修复功能下降 MI 肿瘤易感性增强肿瘤易感性增强139微卫星不稳定(微卫星不稳定(Microsatellite DNA Microsatellite DNA instability,MI instability,MI)n微卫星不稳定(微卫星不稳定(Microsatellite DNA instability,MIMicrosatellite DNA instability,MI)是指是指T
25、 T组织和组织和N N组织相比,其组织相比,其DNADNA等位结构发生简单重等位结构发生简单重复序列的改变,这种改变表现在肿瘤组织与其对应的正复序列的改变,这种改变表现在肿瘤组织与其对应的正常组织常组织PCRPCR产物经电泳后,电泳带出现增加或减少、位置产物经电泳后,电泳带出现增加或减少、位置及带的密度变化。及带的密度变化。N T LOH MI 肿瘤的发生肿瘤的发生涉及多阶涉及多阶段、多基因段、多基因参与的复杂参与的复杂过程,以结过程,以结肠直肠癌为肠直肠癌为例说明其过例说明其过程:程:149六、端粒和端粒酶六、端粒和端粒酶 端粒(端粒(telomeretelomere):是真核细胞染色体末端
26、:是真核细胞染色体末端的一种特殊结构,由端粒的一种特殊结构,由端粒DNADNA和蛋白质组成。和蛋白质组成。其端粒其端粒DNADNA是富含是富含G G的高度的高度 保守的重复核苷酸保守的重复核苷酸序列。对染色体具有保护作用。序列。对染色体具有保护作用。150 不同物种的端粒不同物种的端粒DNA DNA 序列并不一致,人和其它哺乳序列并不一致,人和其它哺乳动物的端粒动物的端粒DNADNA序列由序列由5533方向的(方向的(TTAGGGTTAGGG)n n反复串联组成。在人类大约有反复串联组成。在人类大约有121215Kb15Kb,是非结,是非结构基因,不编码蛋白质。构基因,不编码蛋白质。端粒端粒D
27、NADNA的的33末端较末端较55末端伸出末端伸出121216bp 16bp 的一段的一段弯曲呈帽状结构,保护染色体,防止断裂、重组或弯曲呈帽状结构,保护染色体,防止断裂、重组或降解,促进染色体与核膜粘着,以及减数分裂时同降解,促进染色体与核膜粘着,以及减数分裂时同源染色体配对。源染色体配对。端粒被认为是细胞有丝分裂的端粒被认为是细胞有丝分裂的“生物钟生物钟”,随着细,随着细胞分裂的不断进行,端粒逐渐缩短。当其长度减小胞分裂的不断进行,端粒逐渐缩短。当其长度减小到一定临界值时,细胞趋向衰老、死亡。到一定临界值时,细胞趋向衰老、死亡。151端粒端粒DNA DNA 逐渐变短的主要原因逐渐变短的主要
28、原因:1 1、细胞分裂过程中线形染色体的末端端粒、细胞分裂过程中线形染色体的末端端粒DNADNA不能完全被不能完全被DNADNA指导指导DNADNA多聚酶所复制;多聚酶所复制;2 2、末端的特异性和非特异性降解;、末端的特异性和非特异性降解;3 3、细胞异源端粒之间的不均匀重组。、细胞异源端粒之间的不均匀重组。152影响端粒长度的因素很多,其中主要有:影响端粒长度的因素很多,其中主要有:端粒结合蛋白端粒结合蛋白 端粒帽蛋白端粒帽蛋白 端粒酶及端粒酶及 DNADNA复制酶等复制酶等 其中其中端粒酶端粒酶是最主要因素。是最主要因素。端粒酶(端粒酶(telomerasretelomerasre):)
29、:是一种逆转录酶,能延长端粒末端,由蛋白质是一种逆转录酶,能延长端粒末端,由蛋白质和和RNA RNA 组成,可以其组成,可以其RNARNA为模板指导为模板指导DNADNA合成,向端合成,向端粒末端添加(粒末端添加(TTAGGGTTAGGG)n n序列,使端粒延长,延长序列,使端粒延长,延长细胞的寿命甚至使其永生化。细胞的寿命甚至使其永生化。153端粒合成机制端粒合成机制154155 细胞进入细胞进入G1/SG1/S期,端粒酶活性逐渐增高,而期,端粒酶活性逐渐增高,而在在S S期活性最高,在期活性最高,在G2G2期期/M/M期端粒酶活性逐渐期端粒酶活性逐渐消失。消失。利用利用TRAPTRAP(T
30、elemeric Repeat Amplication Telemeric Repeat Amplication ProtocolProtocol)技术检测正常动物、植物细胞时技术检测正常动物、植物细胞时发现,除个别增生活跃的组织有微弱的端粒发现,除个别增生活跃的组织有微弱的端粒酶活性外,其他组织都没有端粒酶活性,但酶活性外,其他组织都没有端粒酶活性,但在肿瘤细胞、永生型细胞及干细胞(如造血在肿瘤细胞、永生型细胞及干细胞(如造血干细胞)中,端粒酶可被激活,活性增强。干细胞)中,端粒酶可被激活,活性增强。156端粒酶与肿瘤端粒酶与肿瘤 在恶性肿瘤中,端粒酶活性明显增高,在恶性肿瘤中,端粒酶活性明
31、显增高,以延长端粒,弥补因细胞分裂而造成的以延长端粒,弥补因细胞分裂而造成的端粒缩短,从而使细胞无限增殖恶化,端粒缩短,从而使细胞无限增殖恶化,甚至使癌细胞永生化。甚至使癌细胞永生化。157 UedaUeda报道(报道(19971997,Cancer Res.Cancer Res.),在恶性肿),在恶性肿瘤中瘤中91%91%端粒酶活性增强。端粒酶活性增强。Zheng PZheng P。S S。19971997,报道,妇科肿瘤中端粒,报道,妇科肿瘤中端粒酶活性增强的占酶活性增强的占95%95%。上述情况表明,绝大多数肿瘤细胞中都呈端上述情况表明,绝大多数肿瘤细胞中都呈端粒酶阳性,而在正常组织中却
32、无表达。揭示,粒酶阳性,而在正常组织中却无表达。揭示,端粒酶可能是一个广泛的肿瘤标致,可用于端粒酶可能是一个广泛的肿瘤标致,可用于肿瘤的诊断。肿瘤的诊断。Hiyama E Hiyama E (19971997,CancerResCancerRes),通过检),通过检测胰腺肿瘤得出:测胰腺肿瘤得出:95%95%胰腺癌中端粒酶活性增胰腺癌中端粒酶活性增强,而在良性胰腺瘤中为强,而在良性胰腺瘤中为0%0%。158 哪么能否应用抑制端粒酶的手段来治疗肿瘤哪么能否应用抑制端粒酶的手段来治疗肿瘤呢?呢?这个问题正是目前人们关注的问题,也这个问题正是目前人们关注的问题,也是研究的热点。是研究的热点。研究者们
33、建议利用端粒酶抑制剂进行肿瘤治研究者们建议利用端粒酶抑制剂进行肿瘤治疗。疗。7-deaza-d ATP7-deaza-d ATP(7-7-脱氮脱氮-2-2脱氧腺苷酸)和脱氧腺苷酸)和7-7-deaza-d GTPdeaza-d GTP(7-7-脱氮脱氮-2-2脱氧鸟苷酸)是潜在脱氧鸟苷酸)是潜在的端粒酶抑制剂,二者都可通过端粒酶的催的端粒酶抑制剂,二者都可通过端粒酶的催化作用惨入到端粒化作用惨入到端粒DNADNA中,由于它们的掺入使中,由于它们的掺入使端粒过早地缩短,开僻了肿瘤治疗的新途径。端粒过早地缩短,开僻了肿瘤治疗的新途径。159 KanazawaKanazawa制备一种锤头核酸酶制备一
34、种锤头核酸酶telorztelorz,作用,作用于人类端粒酶的于人类端粒酶的RNA RNA 成分,对已合成的端粒成分,对已合成的端粒酶酶RNARNA成分具有特异分解作用,对端粒酶有明成分具有特异分解作用,对端粒酶有明显的抑制作用。显的抑制作用。应用反义核酸治疗方法,人工合成反义应用反义核酸治疗方法,人工合成反义DNA/RNA DNA/RNA 抑制端粒酶的作用。抑制端粒酶的作用。160核酶核酶161核酶162RNARNA干涉干涉 近年来的研究表明近年来的研究表明 将与将与mRNA对应的正义对应的正义RNA和反义和反义RNA组组成的双链成的双链RNA(dsRNA)导入细胞,可以使导入细胞,可以使m
35、RNA发生特异性的降解,导致其相应的基发生特异性的降解,导致其相应的基因沉默。这种转录后基因沉默机制因沉默。这种转录后基因沉默机制(post-transcriptionalgenesilencing,PTGS)被被称为称为RNA干扰(干扰(RNAi)。)。163164GFP报告基因-RNAi165166167168169RNA干涉05/11/18 cell wangxiaodong 170RNAi的分子机制的分子机制 RNA干扰包括干扰包括起始阶段和效应阶段起始阶段和效应阶段(inititationandeffectorsteps)。在起始阶段在起始阶段加入的小分子加入的小分子RNA被切割为被
36、切割为21-23核苷酸长的小分子干扰核苷酸长的小分子干扰RNA片段片段(smallinterferingRNAs,siRNAs)。证据表明;一个称为。证据表明;一个称为Dicer的酶,的酶,是是RNaseIII家族中特异识别双链家族中特异识别双链RNA的一员,它能的一员,它能以一种以一种ATP依赖的方式逐步切割由外源导入或者由依赖的方式逐步切割由外源导入或者由转基因,病毒感染等各种方式引入的双链转基因,病毒感染等各种方式引入的双链RNA,将,将RNA降解为降解为21-23bp的双链的双链RNAs(siRNAs),每个,每个片段的片段的3端都有端都有2个碱基突出。个碱基突出。171172 在在R
37、NAi效应阶段效应阶段siRNA双链结合一个核酶复合双链结合一个核酶复合物从而形成所谓物从而形成所谓RNA诱导沉默复合物(诱导沉默复合物(RNA-inducedsilencingcomplex,RISC)。激活。激活RISC需要一个需要一个ATP依赖的将小分子依赖的将小分子RNA解双链的过程。解双链的过程。激活的激活的RISC通过碱基配对定位到同源通过碱基配对定位到同源mRNA转录本转录本上,并在距离上,并在距离siRNA3端端12个碱基的位置切割个碱基的位置切割mRNA。尽管切割的确切机制尚不明了,但每个尽管切割的确切机制尚不明了,但每个RISC都都包含一个包含一个siRNA和一个不同于和一
38、个不同于Dicer的的RNA酶酶(Ago2)173如何进行RNAi试验 (一)siRNA的设计 在设计在设计RNAiRNAi实验时,可以先在以下网站进行目标序列实验时,可以先在以下网站进行目标序列的筛选:的筛选:174(二二)siRNA)siRNA的制备的制备 1.1.化学合成化学合成 公司都可以根据用户要求提供高质量的化学合成公司都可以根据用户要求提供高质量的化学合成siRNAsiRNA。2.2.体外转录体外转录 以以DNA OligoDNA Oligo为模版,通过体外转录合成为模版,通过体外转录合成siRNAssiRNAs。3.3.用用RNase III RNase III 消化长片断双链
39、消化长片断双链RNARNA制备制备siRNAsiRNA dsRNA dsRNA消化法的主要优点在于可以跳过检测和筛选有效消化法的主要优点在于可以跳过检测和筛选有效siRNAsiRNA序列的。序列的。4.siRNA4.siRNA表达载体表达载体 siRNAsiRNA表达载体的优点在于可以进行较长期研究表达载体的优点在于可以进行较长期研究带有带有抗生素标记的载体可以在细胞中持续抑制靶基因的表达,持抗生素标记的载体可以在细胞中持续抑制靶基因的表达,持续数星期甚至更久。续数星期甚至更久。5.siRNA5.siRNA表达框架表达框架 siRNAsiRNA表达框架表达框架(siRNA expression
40、 cassettes(siRNA expression cassettes,SECs)SECs)是是一种由一种由PCRPCR得到的得到的siRNAsiRNA表达模版,包括一个表达模版,包括一个RNA pol IIIRNA pol III启启动子,一段发夹结构动子,一段发夹结构siRNAsiRNA,一个,一个RNA pol IIIRNA pol III终止位点,能终止位点,能够直接导入细胞进行表达而无需事前克隆到载体中。够直接导入细胞进行表达而无需事前克隆到载体中。175176177(三三)siRNA)siRNA的转染的转染1.磷酸钙共沉淀磷酸钙共沉淀将氯化钙,将氯化钙,RNA(或或DNA)和磷
41、酸缓冲液混合,沉淀形成包含和磷酸缓冲液混合,沉淀形成包含DNA且极且极小的不溶的磷酸钙颗粒。磷酸钙小的不溶的磷酸钙颗粒。磷酸钙-DNA复合物粘附到细胞膜并通过胞饮复合物粘附到细胞膜并通过胞饮进入目的细胞的细胞质。进入目的细胞的细胞质。2.电穿孔法电穿孔法电穿孔通过将细胞暴露在短暂的高场强电脉冲中转导分子。将细胞悬浮电穿孔通过将细胞暴露在短暂的高场强电脉冲中转导分子。将细胞悬浮液置于电场中会诱导沿细胞膜的电压差异,据认为这种电压差异会导致液置于电场中会诱导沿细胞膜的电压差异,据认为这种电压差异会导致细胞膜暂时穿孔。细胞膜暂时穿孔。3.DEAE-葡聚糖和葡聚糖和polybrene带正电的带正电的D
42、EAE-葡聚糖或葡聚糖或polybrene多聚体复合物和带负电的多聚体复合物和带负电的DNA分子分子使得使得DNA可以结合在细胞表面。通过使用可以结合在细胞表面。通过使用DMSO或甘油获得的渗透休克或甘油获得的渗透休克将将DNA复合体导入。复合体导入。4.机械法机械法转染技术也包括使用机械的方法,比如显微注射和基因枪(转染技术也包括使用机械的方法,比如显微注射和基因枪(biolisticparticle)将)将DNA,RNA或蛋白直接转入细胞质或细胞核。或蛋白直接转入细胞质或细胞核。5.阳离子脂质体试剂阳离子脂质体试剂形成形成DNA-阳离子脂质体复合物。被俘获的阳离子脂质体复合物。被俘获的DN
43、A就会被导入培养的细胞。就会被导入培养的细胞。178RNAi的应用前景的应用前景 1.研究基因功能的新工具研究基因功能的新工具 2.研究信号传导通路的新途径研究信号传导通路的新途径 3.开展基因治疗的新策略开展基因治疗的新策略1791.研究基因功能的新工具研究基因功能的新工具 已有研究表明已有研究表明RNAi能够在哺乳动物中灭活能够在哺乳动物中灭活或降低特异性基因的表达,制作多种表型,或降低特异性基因的表达,制作多种表型,而且抑制基因表达的时间可以随意控制在发而且抑制基因表达的时间可以随意控制在发育的任何阶段,产生类似基因敲除的效应。育的任何阶段,产生类似基因敲除的效应。RNAi将大大促进对这
44、些新基因功能的研究。将大大促进对这些新基因功能的研究。与传统的基因敲除技术相比,这一技术具有与传统的基因敲除技术相比,这一技术具有投入少,周期短,操作简单等优势,近来投入少,周期短,操作简单等优势,近来RNAi成功用于构建转基因动物模型的报道日成功用于构建转基因动物模型的报道日益增多,标志着益增多,标志着RNAi将成为研究基因功能不将成为研究基因功能不可或缺的工具。可或缺的工具。1802.研究信号传导通路的新途径研究信号传导通路的新途径 联合利用传统的缺失突变技术和联合利用传统的缺失突变技术和RNAi技术技术,可以很可以很容易地确定复杂的信号传导途径中不同基因的上下容易地确定复杂的信号传导途径
45、中不同基因的上下游关系,游关系,Clemensy等应用等应用RNAi研究了果蝇细胞系研究了果蝇细胞系中胰岛素信息传导途径中胰岛素信息传导途径,取得了与已知胰岛素信息传取得了与已知胰岛素信息传导通路完全一致的结果导通路完全一致的结果.在此基础上分析了在此基础上分析了DSH3PX1与与DACK之间的关系之间的关系,证实了证实了DACK是位于是位于DSH3PX1磷酸化的上游激酶磷酸化的上游激酶.RNAi技术较传统的转染实验简单、快速、重复性技术较传统的转染实验简单、快速、重复性好,克服了转好,克服了转染实验中重组蛋白特异性聚集和转染染实验中重组蛋白特异性聚集和转染效率不高的缺点,效率不高的缺点,因此
46、认为因此认为RNAi技术将可能成为技术将可能成为研究细胞信号传导通路的新途径。研究细胞信号传导通路的新途径。181 3.开展基因治疗的新策略开展基因治疗的新策略 RNAi具有抵抗病毒入侵,抑制转座子活动,防止自私基因具有抵抗病毒入侵,抑制转座子活动,防止自私基因序列过量增殖等作用,因此可以利用序列过量增殖等作用,因此可以利用RNAi现象产生抗病毒现象产生抗病毒的植物和动物,并可利用不同病毒转录序列中高度同源区段的植物和动物,并可利用不同病毒转录序列中高度同源区段相应的相应的dsRNA抵抗多种病毒。抵抗多种病毒。肿瘤是多个基因相互作用的基因网络调控的结果,传统技肿瘤是多个基因相互作用的基因网络调
47、控的结果,传统技术诱发的单一癌基因的阻断不可能完全抑制或逆转肿瘤的生术诱发的单一癌基因的阻断不可能完全抑制或逆转肿瘤的生长长,而而RNAi可以利用同一基因家族的多个基因具有一段同源可以利用同一基因家族的多个基因具有一段同源性很高的保守序列这一特性性很高的保守序列这一特性,设计针对这一区段序列的设计针对这一区段序列的dsRNA分子,只注射一种分子,只注射一种dsRNA即可以产生多个基因同时即可以产生多个基因同时剔除的表现,也可以同时注射多种剔除的表现,也可以同时注射多种dsRNA而将多个序列不而将多个序列不相关的基因同时剔除。相关的基因同时剔除。182表观基因组学表观基因组学/遗传学遗传学 在不
48、影响在不影响DNADNA序列的情况下对其修饰序列的情况下对其修饰,不仅不仅影响个体的发育而且可遗传影响个体的发育而且可遗传.如如:一卵双生在同一环境中生一卵双生在同一环境中生,成年后表现成年后表现出性格、健康等方面的差异出性格、健康等方面的差异-表观遗传。表观遗传。经典的遗产物质经典的遗产物质-核酸(核酸(DNADNA)储存和传递)储存和传递遗传信息。遗传信息。表观遗传修饰也可记忆、遗传,向传统的表观遗传修饰也可记忆、遗传,向传统的遗传规律提出挑战。遗传规律提出挑战。183DNADNA甲基化甲基化-表观遗传表观遗传 DNADNA甲基化一般指构成甲基化一般指构成DNADNA的四个碱基之一的胞嘧啶
49、发的四个碱基之一的胞嘧啶发生异常,从而导致基因活性发生变化,即基因被生异常,从而导致基因活性发生变化,即基因被“打打开开”或或“关闭关闭”。这种变化容易诱发癌症等疾病。绘。这种变化容易诱发癌症等疾病。绘制出的制出的DNADNA甲基化图谱将可能用于诊断疾病,甚至能甲基化图谱将可能用于诊断疾病,甚至能在基因突变前预测人患癌症的风险性。在基因突变前预测人患癌症的风险性。而科学家认为,大约一半的人类疾病可归咎于基因,而科学家认为,大约一半的人类疾病可归咎于基因,而另外一半则与非遗传因素有密切联系,其中表遗传而另外一半则与非遗传因素有密切联系,其中表遗传因素又占据非遗传因素的一定比例。至于因素又占据非遗
50、传因素的一定比例。至于DNADNA甲基化,甲基化,它只是表遗传因素中较重要的一种。它只是表遗传因素中较重要的一种。184DNA甲基化仅限于甲基化仅限于CpG双核苷酸双核苷酸(人(人DNA约约3%胞嘧啶甲基化),胞嘧啶甲基化),CpG在胞嘧啶甲基转移酶作用下,加在胞嘧啶甲基转移酶作用下,加-CH3到到胞嘧啶胞嘧啶5C原子上,形成原子上,形成5-甲基胞嘧啶,甲基胞嘧啶,其化学上不稳定并易于脱氨基形成胸腺其化学上不稳定并易于脱氨基形成胸腺嘧啶嘧啶(T)。185186 5 CpG 3 甲基转移酶甲基转移酶 5 CmpG 3 3 GpC 5 3 GpCm 5 甲基化后复制甲基化后复制 5 CmpG 3