1、 高聚物的玻璃化转变高聚物的玻璃化转变The glass transition of polymer1结构 性能 微观结构 分子运动规律力学状态及相应的热转变对于聚合物来说:引言图1 非晶态聚合物的温度形变曲线注:在力的作用下,等速T,测其聚合物形变随T的变化。三态三态两转变两转变2123玻璃化转变玻璃化转变玻璃化转变理论玻璃化转变理论玻璃化转变温度测定方法玻璃化转变温度测定方法4玻璃化转变温度影响因素玻璃化转变温度影响因素高聚物的玻璃化转变(The glass transition of polymer)图1 非晶态聚合物的温度形变曲线注:在力的作用下,等速T,测其聚合物形变随T的变化。三态
2、三态两转变两转变3一、玻璃化转变 (The transition of glass)晶态聚合物?非晶态:晶 态 :例如:丁苯橡胶、聚甲基丙烯酸甲酯、例如:丁苯橡胶、聚甲基丙烯酸甲酯、聚乙烯聚乙烯等。等。例如:葡萄糖例如:葡萄糖 所以我们先讨论所以我们先讨论非晶态高聚物非晶态高聚物的玻璃化转变。的玻璃化转变。聚合物部分化合物玻璃态玻璃态 高弹态高弹态升温降温玻璃化转变PE:由于结晶度高,至今它的玻璃化温度仍无定论。定义:4二、聚合物玻璃化转变理论(The theories of glass transition)表1 几种玻璃化转变理论理论理论提出者提出者主要内容主要内容自由体积理论自由体积理论
3、 Fox&Flory Simha&Boyer动力学理论 Aklonis&Kovacs热力学理论 Dimarzia&Gibbs 等黏态理论 51.自由体积理论 高分子自由体积理论是在Eyring等提出的液体空穴理论基础上发展起来的。Eyring理论认为:在液体中除存在分子以外,还存在未被分子占据的空穴,这些空穴称为自由体积。1.1 Fox 和 Flory 的自由体积理论自由体积理论认为,无论液体或固体,其体积包括两部分:体积=占有体积+自由体积占有体积(occupied volume)-分子链本身所占据的体积,即为单个原子的振动体积,由原子范德华半径和与原子振动有关的体积决定,是体积的主要部分。
4、自由体积自由体积(free volume)-分子链堆砌形成的空隙。67 自由体积的存在非常重要。自由体积的存在非常重要。自由体积可提供分子活动的空间,对高聚物来讲,为链段运动提供了空间,使得链段有可能通过转动和位移来调整构想。图2 链折叠和链扭曲引起自由体积增加示意图 图3 链段运动示意图8 温度高于玻璃化转变温度时,高分子自由体积较大,以保证构象改变及链段运动所需要的更大空间;温度降低时自由体积减小,当达到某一确定温度时自由体积达到最小值,此时再也没有足够的空间保证分子链的构象改变,链段的运动被迫停止,分子链的形态和构象被完全“冻结”这就是玻璃化温度。聚合物发生玻璃化转变时,自由体积所占的体
5、积分数不变;聚合物进入玻璃态后自由体积不再随温度降低而改变。Fox-Flory自由体积理论基本假设9左图中:V0 为在热力学零度时链的占有体积;Vf 为玻璃态下的自由体积;Vg 为玻璃态下的总体积;VTg 为在玻璃化温度时的总体积;VTr为在玻璃化温度时的总体积;(dV/dT)r 为高弹态下聚合物的体积膨胀率;(dV/dT)g 为玻璃态下聚合物的体积膨胀率。图 4 Fox Flory 自由体积理论示意图自由体积理论的定量推导有关公式:10(1)绝对零度时聚合物总体积:(2)玻璃态时聚合物总体积:式中 V0 为聚合物在热力学零度时的体积;Vf 为聚合物在玻璃态时的自由体积;Vg 为聚合物在玻璃态
6、时的总体积。Vg=V0+Vf+Tg()gdVdT(3 3)_ V0+Tg()gdVdT式中为Tg 时聚合物的实际体积。Vg=V0+Vf+Tg()gdVdT(3 3)_(3)玻璃化温度时聚合物总体积:(4)则高弹态时聚合物总体积:11温度 T 高于 Tg ,此时聚合物内的自由体积为:Vfr=Vf+dVdT(3 5)_(T Tg)_ ()rdVdT()g_ dVdT()rdVdT()g_式中为橡胶态与玻璃态聚合物体积 随温度变化而变化之差,即在玻璃化温度 Tg以上自由体积随温度的变化率。Vg=V0+Vf+Tg()gdVdT(3 3)_TVr=Vg+()rdVdT(3 4)_(T Tg)_VTrT
7、V0+Tg()gdVdT式中为Tg 时聚合物的实际体积。膨胀系数 (Coefficient of expansion)rgrdTdVV1gggdTdVV1Coefficient of expansion(膨胀系数)膨胀系数)under the temperature below TgCoefficient of expansion(膨胀系数)膨胀系数)under the temperature higher than TgCoefficient of expansion near Tg (自由体积的膨胀系数)(自由体积的膨胀系数)grf膨胀系数膨胀系数 -单位体积的膨胀率12TT(3 10)_
8、fr=frV rV frV gV(1)将玻璃态时的自由体积分数定义为:fg=Vf /Vg(2)在玻璃化温度Tg 附近橡胶态聚合物的自由体积分数应为:fr=fTg+f (T-Tg)(3)高弹态自由体积分数:这就是按照自由体积理论推导出的玻璃化温度与自由体积变化率之间的著名关系式。13 fTg=Vf /VTg自由体积分数自由体积分数 Williams,Landel和Ferry等证明,各种聚合物玻璃化转变时的自由体积分数fg 总是一个常数(0.025),即等于聚合物总体积的2.5%,聚合物进入玻璃态以后其自由体积不再变化。表表2 几种无定型聚合物在玻璃化转变时的自由体积分数(几种无定型聚合物在玻璃化
9、转变时的自由体积分数(fg)聚苯乙烯聚乙酸乙烯酯聚甲基丙烯酸甲酯聚甲基丙烯酸丁酯聚异丁烯0.0250.0280.0250.0260.026141.2 Simha 和和 Boyer 的自由体积理论的自由体积理论15后来Simha和Boyer对自由体积定义做了修正,建议在热力学温度零度时,玻璃态聚合物的自由体积应该是聚合物的实际体积与液态体积外推到零度时之差值。dVdT(3 12)_()rdVdT()g_TgTgVf =Vf =(3 13)_Vg_TgTgr()g=Vgf自由体积分数:fg=Vf/Vg=Tgf 他们测得多种聚合物在玻璃化温度时的自由体积都等于总体积的11.3%。自由体积理论解释松弛
10、作用自由体积理论解释松弛作用 u现象:聚乙酸乙烯酯(PVAc)在不同冷却速率下所得的比容-温度曲线。冷却速率快的 Tg 低,冷却速率慢的 Tg 高。16图5 聚乙酸乙烯酯比容随温度变化曲线注:图中样品首先升温至较高温度,然后分别在0.02 h和100 h内冷却。自由体积理论的不足之处自由体积理论的不足之处171)得到的自由体积分率有 2.5%与 11.3%两个数据,证明该理论只是定性的;2)假设玻璃化温度以下聚合物的自由体积不随温度而改变显然不符合实际,一个例证是将淬火后的聚合物放在恒温条件下,发现试样的体积将随存放时间的延长而不断缩小。2.热力学理论18按照热力学经典理论,如果发生相转变时吉
11、布斯自由能G对温度或压力的一阶偏导发生不连续的变化,这个转变就是热力学一级相转变。如果吉布斯自由能G对温度或压力的二阶偏导发生不连续的变化,这个转变就是热力学二级相转变。实验发现,聚合物发生玻璃化转变时,热力学参数的变化与二级相转变过程中热力学参数的变化相同。19因此,有人提出玻璃化转变应该被看做热力学二级相转变,Tg则是热力学二级转变温度-这就是玻璃化转变的热力学理论。但是有人也对玻璃化转变的热力学理论提出了质疑。TvTgTg快慢图6 比容-温度曲线对于聚合物来说,真正的热力学二级转变是否存在?如果存在,它应该出现在什么位置?201.在高温时,高分子链可以实现的构象数目很大,每种构象都具有一
12、定的能量。随着温度降低,高分子链发生构象重排,高能量构想数目减少。当温度降低至T2时,所有分子都应调整到能量最低状态的构象。为保证所有的分子链都转变为最低能态构象,实验必须进行的无限慢,在正常的动力学条件下,使构象的重排总能跟上温度的变化,就有可能观察到真正的热力学二级转变温度T2。2.理论上借助WLF方程可以求得T2,在Tg以下约50的地方可观察到真正的热力学转变温度T2。3.等黏态理论211.主要内容玻璃化转变是由于聚合物本体粘度增大所引起的。随着温度降低,聚合物粘度增大,特别是在接近玻璃化转变区域时粘度的增加幅度很快。粘度增加导致链段运动受阻,当粘度增加到使链段的运动运动不能进行的程度时
13、,玻璃化转变就发生了。等黏态理论所定义的玻璃化转变温度是使聚合物的粘度增加到使链段运动不能发生的温度。222.缺陷聚合物的粘度与分子量有关,随分子量增加,聚合物的粘度增大,因此玻璃化转变温度也相应增大。但实验发现,聚合物的玻璃化转变温度在分子量达到一定值后,与分子量无关。所以该理论仅适合低聚物、无机玻璃等。4.动力学理论231.主要内容玻璃化转变是一个松弛过程,当聚合物链段运动的松弛时间与外力作用时间相当时,就会发生链段运动相对应的玻璃化转变。外力作用时间(实验观察时间)链段运动时间(松弛时间)玻璃化转变发生图7 等黏态理论示意图242.作用动力学理论可以很好的解释温度变化速率和外力作用频率与
14、玻璃化转变的关系。如图所示:图8 温度变化速率对玻璃化转变影响图9 外力作用对玻璃化转变的影响原理:原理:利用高聚物发生玻璃化转变时,各种物理参数均发生变化的特性进行测定。TgT物物性性参参数数1-比体积比体积 2-膨胀率膨胀率 3-热容热容4-导热率导热率5-折光率折光率三、玻璃化转变温度测定三、玻璃化转变温度测定(The measurement of glass tempereture)25图10 高分子物性参数与温度变化曲线26物理性质物理性质方法方法体积或比容膨胀计法热力学性质示差扫描量热法(DSC)力学性质热力学曲线法动态力学松弛法电磁效应核磁共振法介电松弛法测定玻璃化转变温度的方法
15、有许多,如下表所示:表3 玻璃化转变温度测量方法1.膨胀计法膨胀计法(实验室法)(实验室法)图11 膨胀计法测定Tg示意图27(1)将试样先装入安瓿瓶中;(2)然后抽真空;(3)将水银或与试样不相溶的高沸点填充液充入瓶中至满,液面达到毛细管内一定高度;(4)用水浴(或油浴)恒速升温加热安瓿瓶,同时记录随温度升高毛细管内液面高度的变化,作体积-温度曲线图,由于由于聚合物在玻璃态时的体积膨胀率小于高弹态时的体积膨胀率聚合物在玻璃态时的体积膨胀率小于高弹态时的体积膨胀率,曲线转折处的温度即为Tg。实验步骤:2829用膨胀计法测定玻璃化转变温度用膨胀计法测定玻璃化转变温度,升温速率,升温速率分别是分别
16、是5/分钟和分钟和10/分钟,所得分钟,所得 Tg是否一样,是否一样,为什么?为什么?不一样,10/分钟的升温速率测得Tg偏高。原因原因:由于聚合物链段运动需要一定的松弛时间,如果升温速率(或外力作用速率)快,聚合物的形变跟不上环境条件的变化,聚合物就显得比较刚硬,使测得的 Tg偏高。TVTg图12 聚合物的体积-温度曲线思考题2.示差扫描量热法示差扫描量热法DSC-利用热力学性质利用热力学性质图13 聚砜的DSC曲线聚合物在发生玻璃化转变时没有热效应,但其热容发生了变化。因此,可采用示差扫描量热法来测量聚合物的玻璃化转变温度。30 将一定尺寸的非晶态聚合物在一定应力作用下,以一定速度升高温度
17、,同时测定样品形变随温度的变化,可以得到温度形变曲线(也称为热机械曲线)。3、热机械法热机械法利用力学性质变化利用力学性质变化31图14 非晶态温度-形变曲线Tg 测量聚合物的动态模量和力学损耗随温度的变化。动态模量温度曲线与相应的静态曲线相似力学损耗温度曲线出现若干损耗峰。通常从最高损耗峰的峰位置确定Tg值。测量方法有:自由振动(如扭摆法和扭辫法)强迫振动共振法(如振簧法)强迫振动非共振法(如动态粘弹谱仪)4、动态力学法、动态力学法利用力学性质变化利用力学性质变化32图15 聚苯乙烯力学损耗与温度关系 在较低的温度下,分子运动被冻结,分子中的各种质子处于各种不同的状态,因此反映质子状态的NM
18、R谱线很宽;而在较高的温度时,分子运动速度加快,质子的环境起平均化的作用,谱线变窄;因此,在发生玻璃化转变时,谱线的宽度有很大的改变,图中的H即样品的NMR谱线宽,对应H急剧降低的温度即Tg值。5、利用电磁性质的变化、利用电磁性质的变化核磁共振核磁共振(NMR)法法图16 聚异丁烯和天然橡胶的NMR谱线宽度336.介电松弛法图17 聚氯乙烯的T曲线T聚合物发生玻璃化转变时,介电常数会发生突变,通过测定聚合物的介电松弛谱,得到介电常数与温度关系曲线,也可测得玻璃化转变温度。如图所示。34四、影响玻璃化转变温度的因素四、影响玻璃化转变温度的因素1.1 主链结构主链结构 分子链柔顺性是影响Tg的最重
19、要因素。主链柔顺性越好,玻璃化转变温度越低;主链刚性越大,玻璃化转变温度越高。(1)主链由饱和单键构成的聚合物)主链由饱和单键构成的聚合物-C-,-C-N-,-C-O-,-Si-O-等,如果分子链上没有极性或具有位阻大的取代基团存在,则这些高聚物都是柔顺的,Tg较低。1.结构因素对结构因素对 Tg的影响的影响35PE:CH268。CH2nCH2nO83。POM:CH3nO123。聚二甲基硅氧烷:CH3Si(2)主链上含有孤立双键,链也较柔顺,)主链上含有孤立双键,链也较柔顺,Tg较低。较低。例如:顺丁橡胶 Tg=95 天然橡胶 Tg=73 丁苯橡胶 Tg=61例如:36(3)主链上具有苯杂环结
20、构(苯基、联苯基、萘基)主链上具有苯杂环结构(苯基、联苯基、萘基等)的聚合物,单键的内旋转受阻使分子链的刚性增等)的聚合物,单键的内旋转受阻使分子链的刚性增加,所以加,所以Tg很高。很高。例如:聚碳酸酯 Tg=150 聚苯醚 Tg=220 因此,对于分子链上含有共轭双键的聚合物,由于分子链不能内旋转,刚性极大,所以Tg也很高。371.2.侧基或侧链侧基或侧链(1)侧基的极性)侧基的极性 a.如果侧基在高分子链上的分布不对称,则侧基极性 ,。当极性基的数量超过一定量时,极性基团之间斥力大于引力,反而使 ;若侧基能形成氢键,也使 。gTgTgT38PE:CH268。CH2nPP:CH10。CH2n
21、20。CH3CH20。CH2nO C H3聚 甲 氧 乙 烯CHCH2nO C H3聚 丙 稀 酸 甲 酯CO15。PV C:CHCH2nClCHCH2n聚 丙 烯 酸:CO O H106。87。PA N:CHCH2n104。CNCCH2nO C H3CO120。CH3PM M A:侧基极性增加,偶极距增加。Tg增高39PP:CHCH2nCH310。40。PIB:CCH2nCH3CH370。CHCH2nCCH2n40。FFF87。CHCH2nCCH2n17。ClClCl40b.如果极性侧基在高分子链上分布对称,则极性基的静电场相互抵消,因而高聚物有较大的柔性,较低。gT41(2)侧基侧基(或侧
22、链或侧链)的位阻效应和柔顺性的位阻效应和柔顺性 a.刚性的大侧基,会使单键的内旋转受阻,。gT208。100。CH2CH2n29。CHCH2nCH2CCH3CH3CHCH2nNCHCH2n68。刚性侧基增大,Tg增大。PE聚4甲基戊烯1PS聚乙烯咔42聚乙烯咔唑b.季碳原子上一个甲基作不对称取代,空间位阻将增大,。gT192。115。3。CCH2nOCH3COCH3CHCH2nOCH3COCH3CHCH2nCHCH2n100。43CCH2nORCOCH3R(n):Tg:1246812183105653521-5-20-65-100Tg 降低c.长而柔的侧链反而会使 Tg 。因为侧基越大,柔性也
23、越大,柔性的增加足以补偿体积效应,并且起了增塑作用,使大分子相互之间隔离,减小了分子间力。Tg降低表4 聚甲基丙烯酸中酯基碳原子数n对Tg的影响442.分子量的影响分子量的影响 分子量低时,随着 ,;分子量超过某一限度后,M对 的影响就不明显了。gTMgTTgMT45图18 玻璃化转变温度与分子量关系 式中:M 无限大时的玻璃化转变温度;无限大时的玻璃化转变温度;数均分子量数均分子量 K 聚合物特征聚合物特征常数常数MKTTgg)()(gTM46gTMgTgT 原因 1.分子量越低,分子链两头的链端链段比例大,这种链端链段活动能力比一般链段要大,较低;随着 ,链端链段的比例下降,变大,分子量超
24、过某一限度后,M对 的影响就不明显了。分子量低的聚合物有更多的链末端。分子量低的聚合物有更多的链末端。链末端比链中间部分有较大的自由体积。链末端比链中间部分有较大的自由体积。为什么?Fox-Flory 方程3.交联的影响交联的影响 随着化学交联点密度的增加,分子链活动受约束的程度也增加,相邻交联点之间的平均长度减小,柔顺性也减小,。gT47 交联高聚物的交联高聚物的 未交联高聚物的未交联高聚物的 交联密度交联密度 Kx 特征常数特征常数 xgxgKTTgTgTxgTgT484.增塑剂的影响增塑剂的影响 增塑剂是一种挥发性、低分子量的有机化合物,加入体系后改进某些力学性能和物理机械性能,便于成型
25、加工。分为极性和非极性两种情况:49(1)非极性增塑剂对非极性聚合物的增塑作用机理:非极性增塑剂对非极性聚合物的增塑作用机理:相当于形成了聚合物浓溶液,聚合物的分子链之间被增塑剂 分子隔开了一定距离,削弱了聚合物分子间力。用量越多,隔离作用越大,Tg 。47增塑后,降低的数值直接与增塑剂的体积成正比:式中:K 比例常数 V 增塑剂体积分数gTKVTg48(2)极性增塑剂对聚合物的增塑作用机理极性增塑剂对聚合物的增塑作用机理:并非分子链间的隔离作用,而是增塑剂的极性基与聚合物分子链的极性基相互作用,取代聚合物分子链间极性基作用,削弱了聚合分子链的相互作用,使大分子之间形成的次价交联点的数量减少,
26、。gT49极性增塑剂使极性聚合物的降低的数值,与增塑剂的摩尔数成正比:式中:比例常数 n 增塑剂的摩尔数 nTg50 下降的原因下降的原因增塑剂使增塑剂使gT1.隔离作用:隔离作用:增塑剂的分子比增塑剂的分子比PVC小的多,活动小的多,活动比较容易,并且为链段提供活动所需要的空间,比较容易,并且为链段提供活动所需要的空间,即把聚合物分子链隔开,增塑剂的用量越多,这即把聚合物分子链隔开,增塑剂的用量越多,这种分子链之间的隔离作用越大种分子链之间的隔离作用越大2.屏蔽作用屏蔽作用:增塑剂上的极性基团与增塑剂上的极性基团与PVC上的氯原上的氯原子相互吸引,减小了子相互吸引,减小了PVC分子之间氯与氯
27、的相互作用,分子之间氯与氯的相互作用,相当于把氯基团遮盖起来,称为屏蔽作用。相当于把氯基团遮盖起来,称为屏蔽作用。515.外界条件对外界条件对 Tg 的影响的影响 外界条件外界条件对玻璃化温度的影响对玻璃化温度的影响 大小:大小:对高聚物施加的外力越大,Tg 作用时间:作用时间:时间越长,Tg 升温速度升温速度升温速度越快,Tg外力外力525.1 外力大小的影响外力大小的影响(1)张力的大小:)张力的大小:张力与Tg的关系式:Tg=A-BfTgA.B常数图19 玻璃化温度与张力的关系 (2)压力:)压力:压力使自由体积下降,故使Tg升高 53外力作用时间对玻璃化温度的影响:外力作用时间对玻璃化
28、温度的影响:由于聚合物链段运动需要一定的松弛时间,如果外力作用时间短(频率大,即作用速度快,观察时间短),聚合物形变跟不上环境条件的变化,聚合物就显得比较刚硬,使测得的 偏高。gT545.2 外力作用时间的影响外力作用时间的影响 5.3 升温速度对玻璃化温度的影响升温速度对玻璃化温度的影响 由于玻璃化转变不是热力学平衡过程,所以 与外界条件有关:升温速度快,高,升温速度慢,低;降温速度快,高,降温速度慢,低。gTgTgTgTgTTvTgTg快慢图20 比容-温度曲线 55应用应用 1.食品的防腐 2.橡胶的玻璃化转变应用56小结(Summary)57内容内容页码页码玻璃化现象3-4玻璃化转变理
29、论自由体积理论6-17热力学理论18-20等黏态理论21-22动力学理论23-24玻璃化转变温度测量膨胀计法27-29示差扫描量热法30热力学曲线法31动态力学松弛法32核磁共振法33介电松弛法34玻璃化转变温度影响因素结构因素35-51外界条件53-5558从分子运动的角度,聚合物的玻璃化转变对应于链段运动的“发生”和“冻结”的临界状态。玻璃化转变是一个有着重要的理论意义和实际意义的性质。u注:(1)对晶态高聚物来讲,玻璃化转变是指其非晶部分的所发生的高弹态与玻璃态之间转变的过程,情况复杂。(2)玻璃化转变是聚合物中普遍存在的现象。但是玻璃化转变现象不局限于聚合物,一些小分子化合物也存在玻璃
30、化转化。(3)在高聚物发生玻璃化转变时,许多物理性能特别是力学性能会发生急剧变化,材料从坚硬的固体变成柔性弹性体。玻璃化转变序号类别影响因素对玻璃化温度的影响结果1内因相对分子质量Mn,Tg,并最终趋于定值2内因交联轻度交联影响不大,高交联Tg3内因结晶度结晶度,Tg,过高不易测定4内因无序共聚物分线性、下凹和上凸3种类型5内因交替共聚物只有一个玻璃化温度6内因接枝、嵌段共聚物相容则Tg不变,否则有两个Tg7外因共混相容则不随组成改变而变化8外因增塑使,Tg 9外因温度改变速率升温速率,测得的Tg10外因外力作用拉伸使Tg,压缩使Tg影响玻璃化温度的因素影响玻璃化温度的因素5960参考图书1.
31、魏无际,俞强等.高分子化学与物理学基础M.北京化学工业出版社,2010.(P 192-204)2.吴其晔,张萍等.高分子物理学M.北京:高等教育出版社,2011.(P 133-164)3.胡文兵,蒋世春等译.高分子物理学M.北京:科学出版社,2009.(P 206-217)4.俞强,魏无际.高分子化学与物理学习指导及习题集M.北京:化学工业出版社,2011.(P 108-114)5.潘祖仁.高分子化学M.北京:化学工业出版社,2012.(P 11-16)6.卿大咏,何毅等.高分子实验教程M.北京:化学工业出版社,2011.(P 148-150)Thank you!请老师同学批评指正!谢谢观赏!