1、因式分解因式分解 整式的乘除与因式分解整式的乘除与因式分解:整式的乘法整式的乘法计算下列各式计算下列各式:x(x+1)=;(x+1)(x1)=.x2+xx21 在小学我们知道,要解决这个问题,在小学我们知道,要解决这个问题,需要把需要把630分解成质数乘积的形式分解成质数乘积的形式.75326302 类似地,在式的变形中,有时需要将类似地,在式的变形中,有时需要将一个多项式写成几个整式的乘积的形式一个多项式写成几个整式的乘积的形式.讨论讨论 630能被哪些数整除能被哪些数整除?1)2()1(22xxx请把下列多项式写成整式乘积的形式请把下列多项式写成整式乘积的形式.)1(xx)1)(1(xx
2、把一个多项式化成几个整式积的形式,把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式这种变形叫做把这个多项式因式分解因式分解(或(或分解因式分解因式).想一想:因式分解与整式乘法有何关系想一想:因式分解与整式乘法有何关系?因式分解与整式乘法是互逆过程因式分解与整式乘法是互逆过程.(x+y)(xy)x2y2因式分解因式分解整式乘法整式乘法练习一练习一 理解概念理解概念 判断下列各式哪些是整式乘法判断下列各式哪些是整式乘法?哪些是哪些是因式分解因式分解?(1)x24y2=(x+2y)(x2y);(2)2x(x3y)=2x26xy (3)(5a1)2=25a210a+1;(4)x2+4x+4
3、=(x+2)2;(5)(a3)(a+3)=a29 (6)m24=(m+2)(m2);(7)2R+2r=2(R+r).因式分解因式分解整式乘法整式乘法整式乘法整式乘法因式分解因式分解整式乘法整式乘法因式分解因式分解因式分解因式分解:多项式中各项:多项式中各项都有的都有的因式,因式,叫做这个多项式的公因式;叫做这个多项式的公因式;把多项式把多项式ma+mb+mc分解成分解成m(a+b+c)的形的形式,其中式,其中m是各项的公因式,另一个因式是各项的公因式,另一个因式(a+b+c)是是ma+mb+mc 除以除以m的商,像这种分解因式的的商,像这种分解因式的方法,叫做方法,叫做怎样分解因式:.mcmb
4、ma 注意注意:各项:各项系数系数都是整数时,因式的都是整数时,因式的系数应取各项系数的系数应取各项系数的最大公约数最大公约数;字母字母取取各项的各项的相同相同的字母,而且各字母的的字母,而且各字母的指数指数取取次数最低次数最低的的.说出下列多项式各项的公因式:说出下列多项式各项的公因式:(1)ma+mb;(2)4kx 8ky;(3)5y3+20y2;(4)a2b2ab2+ab.m4k5y2ab 分析:应先找出分析:应先找出 与与 的的公因式,再提公因式进行分解公因式,再提公因式进行分解.例例1分解因式把cabba323128)(3)(2cbcba 分析:(b+c)是这两个式子的公因式,可以直
5、接提出.)(3)(2cbcba解:)32)(acb例例 2 分解因式分解因式.因式分解:因式分解:(1)24x3y18x2y;(2)7ma+14ma2;(3)16x4+32x356x2;(4)7ab14abx+49aby;(5)2a(yz)3b(yz);(6)p(a2+b2)q(a2+b2).1.20042+2004能被2005整除吗?.3,5)7(3)7(4.22xa,xxa其中先分解因式,再求值思考思考 你能将多项式你能将多项式x216 与多项式与多项式m 24n2分解分解因式吗因式吗?这两个多项式有什么共同的特点吗这两个多项式有什么共同的特点吗?(a+b)(ab)=a2b2a2b2=(a
6、+b)(ab)两个数的平方差两个数的平方差,等于这两个数的和与等于这两个数的和与这两个数的差的积这两个数的差的积.15.4.2 公式法公式法(1)(1)例例3 分解因式分解因式:(1)4x2 9;(2)(x+p)2 (x+q)2.分析:分析:在在(1)中,中,4x2=(2x)2,9=32,4x29=(2x)2 3 2,即可用平方差公式分解因式,即可用平方差公式分解因式.在在(2)中,把中,把(x+p)和和(x+q)各看成一个整体,设各看成一个整体,设x+p=m,x+q=n,则原式化为,则原式化为m2n2.(1)4x2 9 =(2x)2 3 2=(2x+3)(2x 3).(2)(x+p)2 (x
7、+q)2=(x+p)+(x+q)(x+p)(x+q)=(2x+p+q)(pq).例例4 分解因式分解因式:(1)x4y4;(2)a3b ab.分析分析:(1)x4y4写成写成(x2)2 (y2)2的形式,的形式,这样就可以利用平方差公式进行因式分解了这样就可以利用平方差公式进行因式分解了.(2)a3bab有公因式有公因式ab,应先提出公因式,应先提出公因式,再进一步分解再进一步分解.解解:(1)x4y4 =(x2+y2)(x2y2)=(x2+y2)(x+y)(xy).(2)a3bab=ab(a2 1)=ab(a+1)(a 1).分解因式必须进行到每一个多项式都不能再分解为止.练习练习 1.下列
8、多项式能否用平方差公式来分下列多项式能否用平方差公式来分解因式解因式?为什么为什么?(1)x2+y2;(2)x2y2;(3)x2+y2;(4)x2y2.2.分解因式分解因式:(1)a2 b2;(2)9a24b2;(3)x2y4y;(4)a4+16.251 思维延伸思维延伸 1.观察下列各式观察下列各式:3212=8=81;5232=16=82;7252=24=83;把你发现的规律用含把你发现的规律用含n的等式表示出来的等式表示出来.2.对于任意的自然数对于任意的自然数n,(n+7)2(n5)2能被能被24整除吗整除吗?为什么为什么?思考:思考:你能将多项式你能将多项式a2+2ab+b2 与与a
9、22ab+b2分解因分解因式吗?这两个多项式有什么特点?式吗?这两个多项式有什么特点?(a+b)2=a2+2ab+b2,(ab)2=a22ab+b2.两个数的平方和加上(或减去)这两两个数的平方和加上(或减去)这两个数的积的倍,等于这两个数的和(或个数的积的倍,等于这两个数的和(或差)的平方差)的平方.a2+2ab+b2=(a+b)2a22ab+b2=(ab)215.4.2 公式法公式法(2)例例5 分解因式:分解因式:(1)16x2+24x+9;(2)x2+4xy4y2.分析:在分析:在(1)中,中,16x2=(4x)2,9=32,24x=24x3,所以所以16x2+24x+9是一个完全平方
10、式,即是一个完全平方式,即16x2+24x+9=(4x)2+24x3+32a22a bb2+解:解:(1)16x2+24x+9=(4x)2+24x3+32 =(4x+3)2.+解:解:(2)x2+4xy4y2 =(x24xy+4y2)=x22x2y+(2y)2 =(x2y)2.例例5 分解因式:分解因式:(1)(1)16x2+24x+9;(2)(2)x2+4xy4y2.例例6 分解因式分解因式:(1)3ax2+6axy+3ay2;(2)(a+b)212(a+b)+36.分析分析:在(:在(1)中有公因式)中有公因式3a,应先提出公,应先提出公因式,再进一步分解因式,再进一步分解.解:解:(1)
11、3ax2+6axy+3ay2 =3a(x2+2xy+y2)=3a(x+y)2.(2)(a+b)212(a+b)+36=(a+b)22(a+b)6+62=(a+b6)2.将将a+b看作一个看作一个整体,设整体,设a+b=m,则原式化为完全则原式化为完全平方式平方式m212m+36.练习练习1.下列多项式是不是完全平方式?为什么?下列多项式是不是完全平方式?为什么?(1)a24a+4;(2)1+4a2;(3)4b2+4b1;(4)a2+ab+b2.2.分解因式:分解因式:(1)x2+12x+36;(2)2xyx2y2;(3)a2+2a+1;(4)4x24x+1;(5)ax2+2a2x+a3;(6)
12、3x2+6xy3y2.应用提高、拓展创新应用提高、拓展创新 1.1.把下列多项式分解因式,从中你能把下列多项式分解因式,从中你能发现因式分解的一般步骤吗?发现因式分解的一般步骤吗?(1 1);(2 2);(3 3);(4 4)(5 5).44yx 33abba22363ayaxyax22)()(qxpx36)(12)(2baba归纳:归纳:(1)先提公因式(有的话);先提公因式(有的话);(2)利用公式(可以的话);利用公式(可以的话);(3)分解因式时要分解到不能分解为止分解因式时要分解到不能分解为止.2.证明:连续两个奇数的平方差可以被8整除.今天你有什么收获今天你有什么收获?你还有什么疑
13、问吗你还有什么疑问吗?作业:习题作业:习题15.4,2、3、5.激励学生学习的名言警句激励学生学习的名言警句 51关于学习或励志的名言警句1百川东到海,何时复西归;少壮不努力,老大徒伤悲。意思是:时间像江河东流入海,一去不复返;人在年轻时不努力学习,年龄大了一事无成,那就只好悲伤、后悔。出自汉乐府长歌行2 成人不自在,自在不成人。意思是:人要有所成就,”必须刻苦努力,不可放任自流。出自(宋)罗大经鹤林玉露引朱熹小简3 读书百遍,其义自见。意思是:能把一本书读过百遍,其中的含义自然就领会了。出自三国志魏书。4 读书破万卷,下笔如有神。意思是:读书多了,下笔写文章就如有神助。出自(唐)杜甫奉赠韦左
14、丞丈二十二韵。5 大志非才不就,大才非学不成。意思是:没有才,宏伟的志向就不能实现;不学习,就不能成大才。出自6(明)郑心材郑敬中摘语。6 非学无以广才,非志无以成学。意思是:不学习便无法增长才于,没有志向就难于取得学业上的成功。出自诸葛亮集诫子书。7发愤忘食,乐以忘忧,不知老之将至。意思是;下决心学习,连吃饭也忘记了;有所心得便高兴得忘记了忧愁,不知道老年就要逼近了。出自论语述而。8功崇惟志,业广惟勤;惟克果断,乃罔后艰。意思是:取得伟大的功业,由于有伟大的志向;完成伟大的功业,在于辛勤不懈地工作;办事果断,没有后患。出自尚书周官。9 积财千万,不如薄技在身。意思是:积累许许多多的财富,不如
15、学习一种小小的技术。出自颜氏家训勉学。10 立志言为本,修身行乃先。意思是:人的立志,语言忠实是它的根本;修养自已的品德,应以行动为先。出自(唐)吴叔达言行相顾。11 莫等闲白了少年头,空悲切。意思是:不要虚度年华,不然到了满头白发之时,只有徒叹奈何了。出自(宋)岳飞满江红。12 人品、学问,俱成于志气;无志气人,一事做不得。意思是:一个人之所以具有高尚的品德,渊博的学问,都是由于他有志气;没有志气的人,什么事也做不成。出自(清)申居郧西岩赘语。13 山积而高,泽积而长。意思是。山是由土石日积月累而高耸起来的,长江大河是由点滴之水长期积聚而成的。比喻知识、业绩都是由少到多,由小到大长期积累、创
16、造而成功的。出自(唐)刘禹锡唐故监察御史赠尚书右仆射王公神道碑铭。14为学之道,必本于思。思则得知,不思则不得也。意思是:学习必须以思考为根本,思考就能得到知识,不思考就得不到知识。出自(宋)晁说之晁氏客语15为学正如撑上水船,一蒿不可放缓。意思是:作学问就象撑着逆水的船,连一蒿也不能放松。比喻学习不要自满,要坚持有恒。16 为学须先立志。意思是:作学问首先应当立志。出自朱熹语录17 学者不患立志不高,患不足以继之耳;不患立言不善,患不足以践之耳。意思是:作学问的人不怕志向立得不高,就怕不能持之以恒;不怕作品里的话说得不漂亮,就怕自己不照着做。出自 薛方山记述上篇18学者大不宜志小气轻,志小则易足,易足则无进;气轻则以未知为已知,未学为已学。意思是:学习要树立大志,没有大志就容易自满,自满了就不易有长进了。学习要有勇气,缺乏勇气,不懂的东西会自以为已经懂了,没有学到的东西会以为已经学到。出自近思录集注卷二。19学不博者,不能守约;志不笃者,不能力行。意思是:学识不广博,就不能得其要领;志向不笃诚,就不能努力去做。出自(宋)杨时二程粹言论学。20学贵知疑,小疑则小进,大疑则大进。意思是:学习贵在懂得提出疑问。有小疑问得到解决,总能有小进步;有大疑问得到解决,就能有大进步。出自格言联壁学问类。