全微分方程的解法课件.ppt

上传人(卖家):晟晟文业 文档编号:5090472 上传时间:2023-02-10 格式:PPT 页数:25 大小:633KB
下载 相关 举报
全微分方程的解法课件.ppt_第1页
第1页 / 共25页
全微分方程的解法课件.ppt_第2页
第2页 / 共25页
全微分方程的解法课件.ppt_第3页
第3页 / 共25页
全微分方程的解法课件.ppt_第4页
第4页 / 共25页
全微分方程的解法课件.ppt_第5页
第5页 / 共25页
点击查看更多>>
资源描述

1、恰当方程(全微分方程)一、概念 二、全微分方程的解法(,)(,)0(,)(,)0dyf x ydxf x y dxdyP x y dxQ x y dy 接接下下来来,我我们们探探讨讨另另外外一一类类可可用用初初等等解解法法求求解解的的方方程程类类型型。为为此此,将将一一阶阶正正规规形形微微分分方方程程改改写写成成,或或更更一一般般地地,的的形形式式。(,)(,)0yxxyxyP x y dxQ x y dy由由前前面面的的例例子子可可以以看看到到,把把微微分分方方程程写写成成这这种种形形式式的的优优点点在在于于:既既可可以以把把 看看成成未未知知函函数数,看看成成自自变变量量;也也可可以以把把

2、 看看成成未未知知函函数数,看看成成自自变变量量。即即变变量量 与与变变量量 在在方方程程中中的的地地位位是是对对称称的的,因因此此也也常常对对称称形形称称形形式式的的式式为为的的方方程程为为微微分分方方程程。一、概念一、概念若有全微分形式若有全微分形式(,)(,)(,)dx yP x y dx Q x y dy则则(,)(,)0P x y dxQ x y dy称为全微分方程。称为全微分方程。定义定义:例例1 1:0 xdxydy221(,)(),2u x yxy令(,),du x yxdxydy所以是全微分方程所以是全微分方程.方程方程 是否为全微分方程?是否为全微分方程?解:解:通解则为通

3、解则为 (C C为任意常数)。为任意常数)。(,)x yC0ydxxdy例例:求求方方程程的的通通解解。(),0.d xyydxxdyydxxdyxyC 解解:因因为为所所以以为为恰恰当当方方程程,且且通通解解为为问题问题:(1)如何判断全微分方程?如何判断全微分方程?(2)如何求解全微分方程?如何求解全微分方程?(3)如何转化为全微分方程?如何转化为全微分方程?定理定理1 1 设函数设函数(,)P x y和(,)Q x y在一个矩形区域在一个矩形区域(,)(,)P x yQ x yyx是全微分方程是全微分方程(,)(,)0P x y dx Q x y dy中连续且有连续的一阶偏导数,则中连续

4、且有连续的一阶偏导数,则 R(1)证明必要性证明必要性证明证明:因为因为 是全微分方程,是全微分方程,(,)(,)0P x y dx Q x y dy则存在原函数则存在原函数 ,使得使得(,)x y(,)(,)(,)dx yP x y dx Q x y dy 所以所以 (,),(,)P x yQ x yxy将以上二式分别对将以上二式分别对 求偏导数,得到求偏导数,得到,x y22,PQx yyy xx 又因为又因为 偏导数连续,偏导数连续,(,),(,)P x y Q x y22x yy x ,即即 所以所以 PQyx(2)证明充分性证明充分性PQyx设设,求一个二元函数求一个二元函数 使它满

5、足使它满足(,)x y(,)(,)(,)dx yP x y dx Q x y dy即即(,),(,)P x yQ x yxy由第一个等式,应有由第一个等式,应有0(,)(,)()xxx yP x y dxy代入第二个等式,应有代入第二个等式,应有0(,)()xxP x ydxyyy0(,)()xxQ x ydxyx这里00(,)x yR0(,)()xxQ x ydxyx0(,)(,)()Q x yQ x yy因此因此0()(,)yQ x y00()(,)yyyQ x y dy C,则则因此可以取因此可以取000(,)(,)(,)xyxyx yP x y dxQ x y dy此时此时(,)(,)

6、(,)dx yP x y dx Q x y dy 这里由于这里由于 ,故曲线积分与路径无关。因此,故曲线积分与路径无关。因此PQyx00(,)(,)(,)(,)(,)x yx yx yP x y dx Q x y dy 二、全微分方程的解法二、全微分方程的解法(1)线积分法线积分法:或或000(,)(,)(,)xyxyx yP x y dxQ x y dy00(,)(,)(,)(,)(,)x yx yx yP x y dx Q x y dy(2)偏积分法偏积分法(,),(,)P x yQ x yxy(,)(,)()x yP x y dxy第一个等式对第一个等式对 积分积分x代入第二个等式求代入

7、第二个等式求()y,即可得即可得(,)x y(3)(3)凑微分法凑微分法直接凑微分得直接凑微分得(,)x y例例2 2:验证方程:验证方程2(cos2)(sin2)0yyyxxedxxx edy是全微分方程,并求它的通解。是全微分方程,并求它的通解。由于由于(,)cos2yP x yyxxe2(,)sin2yQ x yxx e解解:(,)(,)P x yQ x yyx所以方程为全微分方程。所以方程为全微分方程。(,)cos2,yP x yxxey(,)cos2yQ x yxxex(1)(1)线积分法线积分法:2sin2yyxx ey2002sin2xyyxdxxx edy(,)(0,0)(,)

8、(,)(,)x yx yP x y dxQ x y dy故通解为故通解为2sin2yyxx eyC(2)(2)偏积分法偏积分法:假设所求全微分函数为假设所求全微分函数为 (,)x y,则有则有 (,)cos2,yx yyxxex2(,)sin2yx yxx ey2(,)(cos2)()sin()yyx yyxxe dxyyxx ey代入可得代入可得 因此因此22sin()sin2yyxx eyxx e从而从而()2y()2yy即即2(,)sin2yx yyxx eyC(3)凑微分法凑微分法:由于由于 cossin(sin)yxdxxdyd yx222()yyyxe dxx e dyd x e2

9、(2)dydy方程的通解为:方程的通解为:根据二元函数微分的经验根据二元函数微分的经验,原方程可写为原方程可写为2(cossin)(2)20yyyxdxxdyxe dxx e dydy2sin2yyxx eyC例例3 3:验证方程:验证方程()(2sin)0 xey dxxy dy是全微分方程,并求它的通解。是全微分方程,并求它的通解。由于由于 解:解:(,)xP x yey(,)2sinQ x yxy(,)(,)1P x yQ x yyx所以方程为全微分方程。所以方程为全微分方程。(1)(1)线积分法线积分法:12cos2xexyy 00(2sin)xyse dsxs ds(,)(0,0)(

10、,)(,)(,)x yx yP x y dxQ x y dy故通解为故通解为2cosxexyyC(2)(2)偏积分法偏积分法:假设所求全微分函数为假设所求全微分函数为 (,)x y,则有则有(,)xx yeyx(,)2sinx yxyy(,)()()xxx yey dxeyxy所以所以yxyxsin2)(从而从而yysin2)(yycos2)(即即CyxyeyxFxcos2),(3)(3)凑微分法凑微分法:方程的通解为:方程的通解为:根据二元函数微分的经验根据二元函数微分的经验,原方程可写为原方程可写为()2sin0 xe dxydxxdyydy2sin2yyxx eyC练习练习:验证方程:验

11、证方程2(2)(2)0 xxxyeeydxexy dy是全微分方程,并求它的通解。是全微分方程,并求它的通解。方程的通解为:方程的通解为:22xxeyexyC积分因子法 一、概念 二、积分因子的求法一一、定义定义:0),(yxm m连续可微函数,使方程连续可微函数,使方程0),(),(),(),(m m m mdyyxQyxdxyxPyx成为全成为全.微分方程微分方程 则称则称),(yxm m为方程的为方程的积分因子积分因子.例例1 1验证验证x是方程是方程2(24)0yxdxxdy的积分因子,并求方程的通解。的积分因子,并求方程的通解。解:解:22(24)0 xyxdxx dy是全微分方程。

12、是全微分方程。方程通解为方程通解为24x yxC1.1.公式法公式法:()(),PQyxmmxQxQyPyP m mm mm mm m,m求解不容易求解不容易特殊地特殊地:,0 ym m,dxdxm mm m lnlnPQQPxyyxmm(两边同除两边同除 )a.当当 只与只与 有关时有关时,mx 二、积分因子的求法二、积分因子的求法PQQPxyyxmmm11PQQPxyyxmmmm)(1lnxQyPQdxd m m)(xf.)()(dxxfexm m,0 xm m,dydym mm m )(1lnyPxQPdyd m m)(yg.)()(dyygeym mb.b.当当 只与只与 有关时,有关

13、时,uy2.2.观察法观察法:凭观察凑微分得到凭观察凑微分得到),(yxm m常见的全微分表达式常见的全微分表达式)2(22yxdydyxdx )(xydxdyydx )(2xydxydxxdy )(2yxdyydxxdy )(lnxydxyydxxdy )(arctan22xydyxydxxdy )(ln2222yxdyxydyxdx 一般可选用的积分因子有一般可选用的积分因子有22222221111,xyxyxx yxyyx等。等。xdyydx可选用的积分因子有可选用的积分因子有22221111,xyxyxyxdxydy可选用的积分因子有可选用的积分因子有2211,xy例例2 2解解12(

14、),PQQyxx2()dxxxem则原方程成为则原方程成为21(3)(2)0,yxdxydyxx21.x.的通解的通解求微分方程求微分方程32(3)(2)0 xy dxx yx dy1.公式法公式法:223()2ydxyx原方程的通解为原方程的通解为232ydxxdyxdxydyx2232yxyCx2.观察法观察法:将方程左端重新组合将方程左端重新组合,有有32(32)()0 x dxx ydyydxxdyydxxdy可选用的积分因子有可选用的积分因子有22221111,xyxyxy3232x dxx ydy可选用的积分因子有可选用的积分因子有21x因此取积分因子为因此取积分因子为21x原方程的通解为原方程的通解为2232yxyCx 分组求积分因子的思想。分组求积分因子的思想。练习练习 求微分方程求微分方程的通解。的通解。2()0yxdxxdy

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(全微分方程的解法课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|