放射医学科学研究所台北荣总整合性脑功能研究室课件.ppt

上传人(卖家):晟晟文业 文档编号:5155688 上传时间:2023-02-15 格式:PPT 页数:14 大小:284.39KB
下载 相关 举报
放射医学科学研究所台北荣总整合性脑功能研究室课件.ppt_第1页
第1页 / 共14页
放射医学科学研究所台北荣总整合性脑功能研究室课件.ppt_第2页
第2页 / 共14页
放射医学科学研究所台北荣总整合性脑功能研究室课件.ppt_第3页
第3页 / 共14页
放射医学科学研究所台北荣总整合性脑功能研究室课件.ppt_第4页
第4页 / 共14页
放射医学科学研究所台北荣总整合性脑功能研究室课件.ppt_第5页
第5页 / 共14页
点击查看更多>>
资源描述

1、吳育德陽明大學放射醫學科學研究所台北榮總整合性腦功能研究室Introduction To Linear Discriminant Analysis Linear Discriminant Analysis For a given training sample set,determine a set of optimal projection axes such that the set of projective feature vectors of the training samples has the maximum between-class scatter and minimum

2、within-class scatter simultaneously.Linear Discriminant Analysis Linear Discriminant Analysis seeks a projection that best separate the data.wSwwSwwJwtbt)(Sb:between-class scatter matrixSw:within-class scatter matrix)along of projection the is y(i.e.to subject aaxxaynTn1121)21222-(max2 1,k 2 1,class

3、 :,GiveniiuxuxEiixEiuiTiiii)(1,2 ,iuaxaEyEiTiTi2,1)()()()(222 ,iakaauxuxEauaxauaxaEuaxaEyEiTiTTiTiTTiTTiiTTiiiSol:LDA Fisher discriminant analysis2def2122121)21 )()()()(-()(222bbbbIbbbbVSVbbVSVbaSaaSaakkauuaaJTTTwTTbTTwTbTTTwhere ,=k1+k2and let TbuuuuS)(2121wSbVa,.,:problem eigenvalue generalize sat

4、isfies i.e.,000000 ,let wewhere111niiibwinbTwTvvVvvSSVSVIVSVLDA Fisher discriminant analysis11120011 1 since ,with max bbbbTb)(3)(2),(1)from.(3)(1 )1()2(1a since.(2)(let ,(1).)(1 )(or satisfies 001,.,211211221121222121211112121111111uuSuuSauuSkkauuauuuuSaaauuuuSaaSSavvvVawwwTTwTwbwnLDA Fisher discri

5、minant analysisLet M be a real symmetric matrix with largest eigenvalue thenand the maximum occurs when,i.e.the unit eigenvector associated with .11max1uuMuTu ,1u11,.ni ,iiiMniR in basis orthonomal complete a forms )0 (assume nTTTTTTsrnIMMM,.)()(000000111.11Proof:LDA Generalized eigenvalue problem.T

6、heorem 2nnnuuu Ru,.,11 1,1,212niiuuuu IF since max1111111max2112max21111111,TTTniiniiiniiniiiniiiTniiininiiiiiMuuMuuuuuuuMuuuMuMuMNowLDA Generalized eigenvalue problem.proof of Theorem 2If M is a real symmetric matrix with largest eigenvalue .And the maximum is achieved whenever ,where is the unit e

7、igenvector associated with .)0(max21xxxMxT,Then11kx 1)(,Rk1Cor:LDA Generalized eigenvalue problem.proof of Theorem 2LDA Generalized eigenvalue problem.Theorem 1Let Sw and Sb be n*n real symmetric matrices.If Sw is positive definite,then there exists an n*n matrix V which achieves nbwTVSVIVSV000000 a

8、nd 1TThe real numbers 1.n satisfy the generalized eiegenvalue equation:generalized eigenvector :generalized eigenvalueiwiibvSvSiviGeneralized eigenvalue problem.proof of Theorem 1Let and be the unit eigenvectors and eigenvalues of Sw,i.einiri,.,1,nnnwiiiwrrSrS.11.1,000000 or Now define then nU.1Mrrr

9、rUUUSUnnTwT00000000000011 where IUUTSince ri 0(Sw is positive definite),exist 21211000000nrrZ)(whitening IMZZUZSUZTwTTLDA LDA Generalized eigenvalue problem.proof of Theorem 1 Aof seigenvalue the are 1nnTAWW,.,000.00012111111)()(WWWWWIWWWWWWAAAAWWAWAWwwATTTTTTTTiii or )symmetric is fact InIWWAUZSUZU

10、ZSUZUZSUZUZSUZTbTbTbTTbT i.e.matrix W,unitary a exists matrix A symmetric real a exists symmetric is that Note)()()()()()()()(LDA#or or VSVSvvSvvSvSvSUZWVwbnnwnbiwiib000000.2.1111We need to claim:IWWIWWWUZSUZWUZWSUZWTTwTTTwT)()()(.1(applying a unitary matrix to a whitening process doesnt affect it!)

11、()()()(.21VSVSVSVSVVVSVIVSVVSVWUZSUZWAWWIVSVbwbwTTbTwTbTbtTTwT(VT)-1 exists since det(VTSwV)=det(I)det(VT)det(Sw)det(V)=det(I)Because det(VT)=det(V)det(VT)2 det(Sw)=1 0 det(VT)0Generalized eigenvalue problem.proof of Theorem 1Procedure for diagonalizing Sw(real symmetric and positive definite)and Sb(real symmetric)simultaneously is as follows:1.Find i by solving And then find normalized ,i=1,2.,n2.normalized 0)det(1ISSbwiiibwivvSSv1 niIvSvvkviwiiii,.,2,1)(,LDA Generalized eigenvalue problem.proof of Theorem 1

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 医疗、心理类
版权提示 | 免责声明

1,本文(放射医学科学研究所台北荣总整合性脑功能研究室课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|