1、5.2 求解二元一次方程组第五章 二元一次方程组第1课时 代入法学习目标1.掌握代入消元法的意义;2.会用代入法解二元一次方程组;(重点、难点)导入新课导入新课情境引入把大象的体重转化为石块的重量生活中解决问题的方法讲授新课讲授新课用代入法解二元一次方程组一问题:一个苹果和一个梨的质量合计200g,这个苹果的质量加上一个10g的砝码恰好与这个梨的质量相等,问苹果和梨的质量各是多少g?+200 xy+10 xy+10+200 xx x +y =200y=x+10(x+10)x+(x+10)=200 x=95y=105方程组 的解是y =x+10 x+y=200 x=95,y=105.求方程组解的
2、过程叫做解方程组将未知数的个数由多化少,逐一解决的思想,叫做消元思想.转化要点归纳解二元一次方程组的基本思路“消元”二元一次方程组一元一次方程消元转化用“代入”的方法进行“消元”,这种解方程组的方法称为代入消元法,简称代入法.代入法是解二元一次方程组常用的方法之一.典例精析将y=1代入,得 x=4.经检验,x=4,y=1适合原方程组.所以原方程组的解是x=5,y=2.解:将代入,得 3(y+3)+2y=14 3y+9+2y=14 5y=5 y=1.例1:解方程组 3x+2y=14 x=y+3 检验可以口算或在草稿纸上验算,以后可以不必写出.将y=2代入,得 x=5.所以原方程组的解是x=5,y
3、=2.解:由,得 x=13-4y 将代入,得 2(13-4y)+3y=16 26 8y+3y=16 -5y=-10 y=2 例2:解方程组 2x+3y=16 x+4y=13 x y =3,3 x 8 y=14.转化代入求解回代写解 所以这个方程组的解是 x=2,y=1.把y=1代入,得 x=2.把代入,得 3(y+3)8y=14.解:由,得 x=y+3.注意:检验方程组的解例3 解方程组 解这个方程,得 y=1.思考:把代入可以吗?观察上面的方程和方程组,你能发现二者之间的联系吗?请你尝试求得方程组的解。(先试着独立完成,然后与你的同伴交流做法)1为什么能替换?代表了同一个量二元一次方程组 一
4、元一次方程消元2代入前后的方程组发生了怎样的变化?(代入的作用)化归思想代入做一做 若方程5x 2m+n+4y 3m-2n=9是关于x、y的二元一次方程,求m、n 的值.解:根据已知条件可列方程组:2m+n=13m 2n=1由得把代入得:n=1 2m3m 2(1 2m)=17321n71n7173的值为,的值为nm把m 代入,得:7373m例4 根据市场调查,某种消毒液的大瓶装(500 g)和小瓶装(250 g)两种产品的销售数量(按瓶计算)比为2:5某厂每天生产这种消毒液22.5t,这些消毒液应该分装大、小瓶两种产品各多少瓶?等量关系:大瓶数:小瓶数=2:5大瓶所装消毒液+小瓶所装消毒液=总
5、生产量 代入法解二元一次方程组的简单应用二解:设这些消毒液应该分装x大瓶、y小瓶.根据题意可列方程组:由 得:xy25把 代入 得:2250000025250500 xx解得:x=20000把x=20000代入 得:y=500005000020000yx答:这些消毒液应该分装20000大瓶和50000小瓶.2250000025050025yxyx二元一次方程组52xy50025022 500 000 xy消去y一元一次方程550025022 500 0002xx变形52yx代入解得20 000 x 解得用52x代替y,消去未知数y50 000y=2250000025050025yxyx再议代入
6、消元法再议代入消元法总结归纳解二元一次方程组的步骤:第一步:在已知方程组的两个方程中选择一个适当的方程,将它的某个未知数用含有另一个未知数的代数式表示出来.第二步:把此代数式代入没有变形的另一个方程中,可得一个一元一次方程.第三步:解这个一元一次方程,得到一个未知数的值.第四步:回代求出另一个未知数的值.第五步:把方程组的解表示出来.第六步:检验(口算或在草稿纸上进行笔算),即把求得的解代入每一个方程看是否成立.用代入消元法解二元一次方程组时,尽量选取一个未知数的系数的绝对值是1的方程进行变形;若未知数的系数的绝对值都不是1,则选取系数的绝对值较小的方程变形.练一练:篮球联赛中,每场比赛都要分
7、出胜负,胜一 场得2分.负一场得1分,某队为了争取较好的名次,想在全部20场比赛中得到35分,那么这个队胜负场数分别是多少?解 设胜的场数是x,负的场数是y,可列方程组:由得 y=20-x.将代入,得 2x+20-x=35.解得 x=15.将 x=15代入得y=5.则这个方程组的解是答:这个队胜15场,负5场.352,20yxyx5,15yx当堂练习当堂练习y=2x,x+y=12;(1)(2)2x=y-5,4x+3y=65.解:(1)x=4y=8(2)1.用代入消元法解下列方程组.x=5y=15 2、把下列方程分别用含x的式子表示y,含y的式子表示x:(1)2xy3(2)3x2y13.二元一次
8、方程组 的解是()ABCD.D2,4yxyx4.李大叔去年承包了10亩地种植甲、乙两种蔬菜,共 获利18000元,其中甲种蔬菜每亩获利2000元,乙种 蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜 各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:x+y=10 2000 x+1500y=18000 将由得 y=10-x.将代入,得 2000 x+1500(10-x)=18000.解得 x=6.将x=6代入,得y=4.答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩.解二元一次方程组基本思路“消元”课堂小结课堂小结代入法解二元一次方程组的一般步骤变:用含一个未知数的式子表示另一个
9、未知数代:用这个式子替代另一个方程中相应未知数求:求出两个未知数的值写:写出方程组的解1.1 探索勾股定理第一章 勾股定理导入新课讲授新课当堂练习课堂小结第2课时 验证勾股定理1.学会用几种方法验证勾股定理(重点)2.能够运用勾股定理解决简单问题(重点,难点)学习目标导入新课导入新课观察与思考 活动:请你利用自己准备的四个全等的直角三角形拼出以斜边为边长的正方形 有不同的拼法吗?讲授新课讲授新课勾股定理的验证一 据不完全统计,验证的方法有400多种,你有自己的方法吗?问题:上节课我们认识了勾股定理,你还记得它的内容吗?那么如何验证勾股定理呢?几何画板:勾股定理的多种证明演示.gsp双击图标aa
10、aabbbbcccc方法小结:我们利用拼图的方法,将形的问题与数的问题结合起来,再进行整式运算,从理论上验证了勾股定理 验证方法一:验证方法一:毕达哥拉斯证法大正方形的面积可以表示为 ;也可以表示为 .(a+b)2c2+4 ab(a+b)2=c2+4 ab a2+2ab+b2=c2+2ab a2+b2=c21212cabcab 验证方法二:赵爽弦图验证方法二:赵爽弦图bcabc大正方形的面积可以表示为 ;也可以表示为 .c2=4 ab+(b-a)2 =2ab+b2-2ab+a2 =a2+b2 a2+b2=c2c24 ab+(b-a)21212bcabcaABCD如图,梯形由三个直角三角形组合而
11、成,利用面积公式,列出代数关系式,得化简,得2111()()2.222a b b aabc 222.abc 验证方法三:美国总统证法验证方法三:美国总统证法 abc青入青方青出青出青入青入朱入朱方朱出青朱出入图课外链接abcABCDEFO达芬奇对勾股定理的证明AaBCbDEFOABCDEF 如图,过 A 点画一直线 AL 使其垂直于 DE,并交 DE 于 L,交 BC 于 M.通过证明BCFBDA,利用三角形面积与长方形面积的关系,得到正方形ABFG与矩形BDLM等积,同理正方形ACKH与 矩形MLEC也等积,于是推得222ABACBC 欧几里得证明勾股定理推荐书目议一议ccbbaa观察下图,
12、用数格子的方法判断图中三角形的三边长是否满足a2+b2=c2.勾股定理的简单应用二例1:我方侦查员小王在距离东西向公路400m处侦查,发现一辆敌方汽车在公路上疾驶.他赶紧拿出红外测距仪,测得汽车与他相距400m,10s后,汽车与他相距500m,你能帮小王计算敌方汽车的速度吗?公路公路BCA400m500m解:由勾股定理,得AB2=BC2+AC2,即 5002=BC2+4002,所以,BC=300.敌方汽车10s行驶了300m,那么它1h行驶的距离为300660=108000(m)即它行驶的速度为108km/h.练一练1.湖的两端有A、两点,从与A方向成直角的BC方向上的点C测得CA=130米,
13、CB=120米,则AB为()ABCA.50米 B.120米 C.100米 D.130米130120?AABC2.如图,太阳能热水器的支架AB长为90 cm,与AB垂直的BC长为120 cm.太阳能真空管AC有多长?解:在RtABC中,由勾股定理,得 AC2=AB2+BC2,AC2=902+1202,AC=150(cm).答:太阳能真空管AC长150 cm.例2:如图,高速公路的同侧有A,B两个村庄,它们到高速公路所在直线MN的距离分别为AA12km,BB14km,A1B18km.现要在高速公路上A1、B1之间设一个出口P,使A,B两个村庄到P的距离之和最短,求这个最短距离和解:作点B关于MN的
14、对称点B,连接AB,交A1B1于P点,连BP.则APBPAPPBAB,易知P点即为到点A,B距离之和最短的点过点A作AEBB于点E,则AEA1B18km,BEAA1BB1246(km)由勾股定理,得BA2AE2BE28262,AB10(km)即APBPAB10km,故出口P到A,B两村庄的最短距离和是10km.变式:如图,在一条公路上有A、B两站相距25km,C、D为两个小镇,已知DAAB,CB AB,DA=15km,CB=10km,现在要在公路边上建设一个加油站E,使得它到两镇的距离相等,请问E站应建在距A站多远处?DAEBC151025-x,25)AExEBx 解解:设设长长为为 千千米米
15、则则长长为为(千千米米,由由题题意意得得:2222151025)xx (10 x 解解得得:10EA答答:站站应应建建在在距距 站站千千米米处处.当堂练习当堂练习1.在直角三角形中,满足条件的三边长可以是 (写出一组即可)【解析】答案不唯一,只要满足式子a2+b2=c2即可.答案:3,4,5(满足题意的均可)2.如图,王大爷准备建一个蔬菜大棚,棚宽8m,高6m,长20m,棚的斜面用塑料薄膜遮盖,不计墙的厚度,阳光透过的最大面积是_.200m23.如图,一根旗杆在离地面9 m处折断,旗杆顶部落在离旗杆底部12 m处.旗杆原来有多高?12 m12 m9 m9 m解:设旗杆顶部到折断处的距离为x m
16、,根据勾股定理得222912x,解得x=15,15+9=24(m).答:旗杆原来高24 m.4.如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD),经测量,在四边形ABCD中,AB=3m,BC=4m,AD=13m,B=ACD=90小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地共需花费多少元?解:在RtABC中,由勾股定理,得 AC2=AB2+BC2,AC=5m,在RtACD中,由勾股定理,得 CD2=AD2AC2,CD=12m,S草坪=SRtABC+SRtACD=ABBC+ACDC =(34+512)=36 m2故需要的费用为36100=3600元
17、2121215.如图,折叠长方形ABCD的一边AD,使点D落在BC边的F点处,若AB=8cm,BC=10cm,求EC的长.DABCEF解:在RtABF中,由勾股定理,得 BF2=AF2AB2=10282BF=6(cm).CF=BCBF=4.设EC=x,则EF=DE=8x,在RtECF中,根据勾股定理,得 x2+42=(8x)2解得 x=3.所以EC的长为3 cm.探索勾股定理勾股定理的验证课堂小结课堂小结勾股定理的简单运用小魔方站作品小魔方站作品 盗版必究盗版必究语文语文附赠 中高考状元学习方法 前前 言言 高考状元是一个特殊的群体,在许多高考状元是一个特殊的群体,在许多人的眼中,他们就如浩瀚
18、宇宙里璀璨夺目人的眼中,他们就如浩瀚宇宙里璀璨夺目的星星那样遥不可及。但实际上他们和我的星星那样遥不可及。但实际上他们和我们每一个同学都一样平凡而普通,但他们们每一个同学都一样平凡而普通,但他们有是不平凡不普通的,他们的不平凡之处有是不平凡不普通的,他们的不平凡之处就是在学习方面有一些独到的个性,又有就是在学习方面有一些独到的个性,又有着一些共性,而这些对在校的同学尤其是着一些共性,而这些对在校的同学尤其是将参加高考的同学都有一定的借鉴意义。将参加高考的同学都有一定的借鉴意义。青春风采北京市文科状元北京市文科状元 阳光女孩阳光女孩-何旋何旋 高考总分:高考总分:692分分(含含20分加分分加分
19、)语文语文131分分 数学数学145分分英语英语141分分 文综文综255分分毕业学校:北京二中毕业学校:北京二中报考高校:报考高校:北京大学光华管理学北京大学光华管理学院院来自北京二中,高考成绩672分,还有20分加分。“何旋给人最深的印象就是她的笑声,远远的就能听见她的笑声。”班主任吴京梅说,何旋是个阳光女孩。“她是学校的摄影记者,非常外向,如果加上20分的加分,她的成绩应该是692。”吴老师说,何旋考出好成绩的秘诀是心态好。“她很自信,也很有爱心。考试结束后,她还问我怎么给边远地区的学校捐书”。班主任:我觉得何旋今天取得这样的成绩,我觉得,很重要的是,何旋是土生土长的北京二中的学生,二中
20、的教育理念是综合培养学生的素质和能力。我觉得何旋,她取得今天这么好的成绩,一个来源于她的扎实的学习上的基础,还有一个非常重要的,我觉得特别想提的,何旋是一个特别充满自信,充满阳光的这样一个女孩子。在我印象当中,何旋是一个最爱笑的,而且她的笑特别感染人的。所以我觉得她很阳光,而且充满自信,这是她突出的这样一个特点。所以我觉得,这是她今天取得好成绩当中,心理素质非常好,是非常重要的。高考总分高考总分:711分分毕业学校毕业学校:北京八中北京八中语文语文139分分 数学数学140分分英语英语141分分 理综理综291分分报考高校:报考高校:北京大学光华管理学院北京大学光华管理学院北京市理科状元杨蕙心北京市理科状元杨蕙心