第七讲--数学证明与趣谈课件.ppt

上传人(卖家):晟晟文业 文档编号:5193657 上传时间:2023-02-16 格式:PPT 页数:68 大小:2.99MB
下载 相关 举报
第七讲--数学证明与趣谈课件.ppt_第1页
第1页 / 共68页
第七讲--数学证明与趣谈课件.ppt_第2页
第2页 / 共68页
第七讲--数学证明与趣谈课件.ppt_第3页
第3页 / 共68页
第七讲--数学证明与趣谈课件.ppt_第4页
第4页 / 共68页
第七讲--数学证明与趣谈课件.ppt_第5页
第5页 / 共68页
点击查看更多>>
资源描述

1、1一、什么做证明二、证明的几种理解三、无字证明四、证明趣事五、证明的小结2一、一、什么做证明什么做证明?辞海:“根据已知真实的判断来确定某一判断的真实性的思维形式。”根据某个或某些真实的数学命题和概念,断定另一数学命题的真实性的推理过程叫做数学证明。数学证明是指数学的逻辑证明,它是数学科学的一大特点。一个定理就是一个命题。一个数学证明从某种意一个定理就是一个命题。一个数学证明从某种意义上是一组命题或一类命题。义上是一组命题或一类命题。(哈代,李文林,一个数学家的辩白,江苏教育出版社,1996,P66)3 数学证明的组成 任何证明都由论题、论据和论证三部分组成。论题待证明的论题命题论据用于证明的

2、一论据系列判断论证把论题和论据联系起来的一系列推理4 说它容易,是因为一般书本,尤其是西方的著述,都公认数学证明始于公元前六世纪。据说当时的希腊数学家、哲学家泰勒斯(Thales)证明了几条几何定理,包括如直径把圆平分、等腰三角形的底角相等、对顶角相等之类。到了公元前4世纪,欧几里得写成了不朽巨著几何原本。他从一些基本定义与公理出发,以合乎逻辑的演绎手法推导出四百多条定理,从而奠定了数学证明的模式,成为后世宗师。萧文强,数学证明,江苏教育出版社,1990年07月第1版,第4页5 如果没有严格的证明,则不能信服一事物是可能的还是不可能的。数学家曾证明了一系列可能的事和不可能的事。对于其它科学,如

3、果也能像数学那样严格地进行推理和证明,则必将最终发现许多看上去可能的事其实是不可能的。莫里兹,数学的本性,P1186 二、证明的几种理解二、证明的几种理解 数学的证明数学的证明与与科学的证明科学的证明之间存在着深刻的差别这种差别是理解自毕达哥拉斯以来每个数学家工作的关键。经典数学的证明数学的证明方法是,从一系列公理、定义出发,通过逻辑论证,一步一步地得到某个结论如果公理是正确的,逻辑又没有缺陷,那么得到的结论将是不可否定的。这个结论就是一个定理。数学证明依靠这一逻辑过程,而且一个定理一经证明就永远是对的 科学的证明科学的证明依赖于观察、实验和理解力。而这两者都是容易出错的,从而它只能提供近似真

4、理的概念即使人们最为普遍地接受了的科学证明中也总存在着可疑的成分,而在另外些场合,这种理论最终会被证明是错的,这就导致科学上的革命。张顺燕编著,数学的源与流(第二版),2000年版,第527-529页 7 数学证明与科学证明有着本质的判别数学证明与科学证明有着本质的判别 在物理学中在物理学中,个假设被提出来,用以解释某一类个假设被提出来,用以解释某一类物理现象如果对物理现象的观察与这个假设相符,就成物理现象如果对物理现象的观察与这个假设相符,就成为这个假设成立的证据。进而,这个假设不仅能描述已为这个假设成立的证据。进而,这个假设不仅能描述已知的现象,而且能预见新的结果如果它再次成功,那知的现象

5、,而且能预见新的结果如果它再次成功,那么就有更多的证据支持这个假设最终,证据的数量可能么就有更多的证据支持这个假设最终,证据的数量可能达到压倒的程度,这个假设就作为一个理论而被接受达到压倒的程度,这个假设就作为一个理论而被接受 数学证明与上不同,数学证明具有绝对的意义,是数学证明与上不同,数学证明具有绝对的意义,是无可怀疑的。毕达哥拉斯公元前无可怀疑的。毕达哥拉斯公元前500年证明的定理,今年证明的定理,今天依然正确。数学不依赖于容易出错的实验证据,而是天依然正确。数学不依赖于容易出错的实验证据,而是立足于逻辑。立足于逻辑。张顺燕编著,数学的源与流(第二版),2000年版,第528页 8 数学

6、的机械证明 如几何定理的机械证明,吴文俊、张景中等数学家做了大量工作,解决了等式型或不等型的机器证明。几何的机器证明一般分三个步骤:1从几何公理系统出发,引进坐标系统,使任意几何定理的证明问题成为纯代数问题(几何的代数化与坐标化)。2整理几何定理假设部分的代数关系式,依照确定步骤,验证终结部分的代数关系式是否可以从假设部分的代数关系式推出(几何的机械化)。3依据第二步中确定步骤编成程序,在计算机上实施,以得出定理是否成立的最后结论。即公理化一代数化一坐标化一机械化。公理化一代数化一坐标化一机械化。丁石孙数学与教育,湖南教育出版社1998年04月第2版P1129三、无字证明1011中学数学杂志

7、1992(8)12中学数学教与学,1992(4)1314 婆什迦罗用图去解释勾股定理婆什迦罗用图去解释勾股定理 如魏晋人赵爽注周髀算经弦图一样如魏晋人赵爽注周髀算经弦图一样 最后写一句最后写一句“看呀!看呀!”便不再说什么了便不再说什么了。萧文强,数学证明,1990年07月第1版,第13页1516171819202122 几千年的数学史表明,直观的、物理的方式早于形式演绎方式。正如美国数学史家克莱因所说的:很久以前数学家就知道直觉的可靠性要胜过逻辑很久以前数学家就知道直觉的可靠性要胜过逻辑的可靠性。的可靠性。数学命题的直观证明就是使用知觉来确认论据的正确性与真实性,易于与人的经验相结合,所需的

8、数学基础知识较少。23案例案例1 不单在文献上有这样的记载不单在文献上有这样的记载,甚至甚至“演示演示”(demonstrate)这这个词的希腊文,在欧几里得的时代虽解释为证明,在公元前个词的希腊文,在欧几里得的时代虽解释为证明,在公元前6世纪的时候,却有视觉、观察的意思。世纪的时候,却有视觉、观察的意思。在欧几里得的原本里,每条定理证毕都写上在欧几里得的原本里,每条定理证毕都写上“这就这就是要证明的是要证明的”,后来变成拉丁文的,后来变成拉丁文的 Quod Erat Demonstrandum,简写作,简写作QED 香港不少中学生习惯戏称此谓英文香港不少中学生习惯戏称此谓英文“相当容易相当容

9、易做做”(Quite Easily Done)的缩与的缩与!。最后那个字,便是视觉、。最后那个字,便是视觉、观察的证明遗留下来的痕迹了。观察的证明遗留下来的痕迹了。萧文强,数学证明,江苏教育出版社,1990年07月第1版,第6页四、证明趣事四、证明趣事24案例2 “驴桥在此,愚者莫过”原来欧几里得的几何原本是牛津大学的教科书,这个书第一篇中给出36个定义,再给出5个公设和5个公理,接着叙述了48个命题(定理)其中命题五就是所谓“驴桥”问题:等腰三角形底角必相等。这个定理现在证法很简单;引顶角的平分线是在后面才提到。于是,欧儿里德只能用前面的四个命题来证明,因此是长长一大篇,绝大部分学生到此就看

10、不懂了,因此命题五就成为“笨蛋的难关”。李小军“数学与数学家趣事”25郭彬彩,王庆东,侯海军,数学史与数学家,西安地图出版社,2002.07,P52 26案例案例3 70年代初,美国的东方民航公司登了一则广告,大字标题是 “咖啡、茶、还是飞机?”颇吸引人,广告效果好:“如果我们在短程航机上供应饮品,便不能让你如上公共汽车一样随来随上飞机了。”接着证明:“如果我们在短程航机上供应饮品,服务员便没有时间在飞机上卖票;服务员没有时间在飞机上实票,乘客便须预购机票;乘客预购机票,我们便不用设置候用飞机;我们不用设置候用飞机,便不能保证乘客随来随有机位;如果不能有这项保证,也就没资格叫做穿梭服务了!”风

11、趣地说明了一个证明怎样把前提与一个并不明显的结论连起来。萧文强,数学证明,1990年07月第1版,第9页 27 美国数学家科尔(F.N.Cole)在1903年10月作了一个无言的报告。他在黑板上写下两个式:2671,193707721 761838257287。换句话说,他证明了2671不是一个素数。据说整个过程他一言不发,待他放下手中粉笔时,全场响起热烈的掌声。后来别人问他这花去多少时间,他说整个三年的日日夜夜。萧文强,数学证明,1990年版,第43页案例428 狗猛酒酸狗猛酒酸 宋国有个卖酒的人宋国有个卖酒的人,买卖公道,待客恭敬,酿酒醇美,买卖公道,待客恭敬,酿酒醇美,酒帘醒目,但酒卖不

12、出去,都变酸了。后来有位长者对酒帘醒目,但酒卖不出去,都变酸了。后来有位长者对店主说店主说:“是你的狗太凶猛啦!是你的狗太凶猛啦!”原来,人家都怕店主原来,人家都怕店主的狗。有的人家让小孩子来打酒,那只狗迎上去就咬人,的狗。有的人家让小孩子来打酒,那只狗迎上去就咬人,谁还敢来呢谁还敢来呢?萧文强,数学证明,1990年07月第1版,第1页案例529 古希腊数学家欧几里得(Euclid)(公元前300年),在几何原本中有了关于素数的命题:素数的个数有无穷个,即“若有n个素数,必有n+1个素数。证明证明:假设P是一个最大的素数。令n为所有小于或等于P的素数的乘积。则n+1很明显不能被任何小于或等于P

13、的素数整除,因此只有两种可能:(1)n+1是一个大于P的素数 (2)n+1的质因子都大于P 不论是(1)或(2)的情况都会得到大于P的素数。案例630 棘刺母猴棘刺母猴 燕王供养了一位自称能在棘刺尖上雕母猴的卫国人燕王供养了一位自称能在棘刺尖上雕母猴的卫国人,并想看他表演。谁料这客人只顾吃喝玩乐,还说若国王并想看他表演。谁料这客人只顾吃喝玩乐,还说若国王要看棘刺母猴,必须半年不进后宫,不喝酒,不吃肉,要看棘刺母猴,必须半年不进后宫,不喝酒,不吃肉,而且要待至雨停日出,似明似暗的一刹那才能看到。燕而且要待至雨停日出,似明似暗的一刹那才能看到。燕王拿他没法,只好一直供养他。后来有位铁匠对燕王说王拿

14、他没法,只好一直供养他。后来有位铁匠对燕王说:我是打刀的,我知道刻东西需用小刀,而且刻的东我是打刀的,我知道刻东西需用小刀,而且刻的东西一定要比刀刃大方行。如果棘刺尖儿容纳不下刀刃,西一定要比刀刃大方行。如果棘刺尖儿容纳不下刀刃,就不能在上面雕刻了。请国王瞧瞧客人的刻刀,不就知就不能在上面雕刻了。请国王瞧瞧客人的刻刀,不就知道他有没有说谎吗道他有没有说谎吗?于是国王问客人取刻刀看,客人藉辞回家取刀趁机于是国王问客人取刻刀看,客人藉辞回家取刀趁机溜走了!溜走了!萧文强,数学证明,1990年07月第1版,第1页案例731 对于反证法对于反证法,英国近代数学家哈代说得好英国近代数学家哈代说得好:欧几

15、里得很喜欢采用归谬法欧几里得很喜欢采用归谬法(即反证法即反证法)。这是数学家最有力的一件武器,比起象棋开局时这是数学家最有力的一件武器,比起象棋开局时牺牲一子以取得优势的让棋法还要高明。象棋弈牺牲一子以取得优势的让棋法还要高明。象棋弈者不过牺牲一卒或顶多一子,数学家则索性把全者不过牺牲一卒或顶多一子,数学家则索性把全局拱手让子对方!局拱手让子对方!欧阳锋,数学的艺术,1997年版,第181页32 柏拉图在理想园的一段话,这是很可信的:你一定晓得,研究几何、算术或类似科学的人,以奇数、你一定晓得,研究几何、算术或类似科学的人,以奇数、偶数、图形、三种角及这一类东西作为基础。这是他们的研偶数、图形

16、、三种角及这一类东西作为基础。这是他们的研究的出发点,他们不认为有需要对这些再加任何说明,这是究的出发点,他们不认为有需要对这些再加任何说明,这是开始的原理开始的原理。如,公元前公元前6世纪毕达哥拉斯学派关于图形数的一些定理,看世纪毕达哥拉斯学派关于图形数的一些定理,看来是凭形象观察去证明的。他们常把数描绘成小石于,按小来是凭形象观察去证明的。他们常把数描绘成小石于,按小石子能排列成的形状把数分类。例如,石子能排列成的形状把数分类。例如,l、4、9、16,叫做叫做正方形数正方形数;1、3、6、10、叫做三角形数叫做三角形数萧文强,数学证明,江苏教育出版社,1990年07月第1版,第5页33cb

17、aabr2234 把这四个这样的三角形合成一矩形,再重新拼凑寻20块小片,得到另一矩形,两矩形的面积相等,一个是2ab,另一个是2r(a+b+c).故2ab=2r(a+b+c)即2r=2ab/(a+b+c).353637萧文强,数学证明,1990年07月第1版,第25页 38萧文强,数学证明,1990年07月第1版,第2728页 谁能保证证明没有错误呢?如汤普逊一菲特定理为例,有多少人能透彻读通那255页?所谓透彻,是指连文章里引用到的定理也全部核实。这番功夫是很费劲的,而且要十分仔细,任何细节都不能放过或者借别人之手去验证。即使真的有这样的人,怎能肯定任何错误都逃不过他的锐利目光呢?39 据

18、说,波兰数学家史坦因豪斯的学生,根据希尔伯特几何基础公理的形式化,把勾股定理的证明几乎写了89页,这只不过是一条定理的证明而巳。最著名的是罗素与怀特海1910一1913年出版的三卷巨著数学原理,根据公理化方法,花了三百多页的篇幅才证明了 1+12。有人认为这是最不可读的杰作。军 萧文强,数学证明,1990年07月第1版,第29页40 使用计算机检验全部可能情况得出结论的证明,也没有使我们增添理解。计算机证明令我不满意并非是它有没有核实该命题,正如用人手花几个月检验几百页的证明一样,而是通过证明并没有使我获得理解。固然,这引起证明还有另一项功用,就是导致发现,其实这也是理解了问题后的收获。计算机

19、的兴起,有些证明运用了计算机去验算四色问题的计算机证明,争论颇大,算不算是数学证明?谁能确定计算机不会出错。若证明出错,那是计算机本身的毛病,还是该证明本身的纰漏?萧文强,数学证明,1990年版,第43页41 哈代说哈代说:我相信素数定理是因为瓦莱我相信素数定理是因为瓦莱普桑对普桑对它的证明它的证明,但我并不认为但我并不认为数学原理中的证明而数学原理中的证明而相信相信2+2=4。对任何数学家来说,不言而喻的是一。对任何数学家来说,不言而喻的是一个结论的明显性并不影响到证明它的有趣性个结论的明显性并不影响到证明它的有趣性。贺贤孝贺贤孝P10942 通常的证明,如数学家哈代说的“指指点点”,并不是

20、形式化的纯逻辑推导。哈代的数学证明:严格来说,没有所谓证明这个东西,归根结底,我们只能指指点点。我与李特尔伍德把证明管叫“气体”,它只是修辞雄辩,用以加强心理感受;它只是讲课中在黑板上画的图画,用以激发学生的想像力。萧文强,数学证明,1990年07月第1版,第29页43 “指指点点”,自然涉及人的因素。讲解证明的是人,理解证明的也是人。通常的数学证明其实是一项社会活动,难怪苏联数学家曼宁说:一个证明只当它通过被接纳为证明这项社会行为后,它才算是证明。集合论创立人德国数学家康托发现一个惊人结果,1874年写信给数学家戴德金,能把正方形上的点与线段上的点一一对应起来。他认为虽然大家都倾向于相信那是

21、不可能的,要真正决定对或错却并不容易。过了三年多,他找到了答案,但不是如想像中的那样,反而他证明了正方形上的点与它的一条边上的点有一一对应的关系。在这个意义上,正方形与它的一条边有同样多的点。康托把这个发现及证明告诉了戴德金。并对戴德金说:除非我从你这位老朋友口中得悉证明是对或错,否则我的心情难以平静下来。在你未曾证实这回事之前,我只能说,我看到,但我不相信!萧文强,数学证明,1990年07月第1版,第30-31页44 上世纪70年代后期,有两组数学家同时计算数学中拓扑空间的同伦群。有趣的是两组入得到了不同的答案!一组数学家在美国 另一组数学家在日本 为求真相他们交换笔记详加审查,每组各自聚精

22、会神寻找对方的纰漏。结果都找不到对方证明的错误,但显然至少有一个证明是不对的。后来,第三组数学家发表了与美国组相符的答案,于是美国组暂时占了上风。这说明所谓证明,有人的因素,这方面占有重要地位。萧文强,数学证明,1990年07月第1版,第28页45 命题命题:任何三角形皆等腰!任何三角形皆等腰!证明:设ABC是任一三角形,作BC的中垂线DO与BAC的内角平分线AO相交于点O,从O作垂线OE,OF,分别垂直于AB,AC,连OB和OC。则 AOE与AOF全等,ODB与ODC,OBE与OCF全等。若DO与AO相交于三角形内,如图1,便有 AB=AE+BE=AF+CF=AC,若DO与AO相交于三角形外

23、,如图2,便有 AB=A EBE=AFCF=AC。无论哪种情况,三角形都是 等腰三角形。证毕。这错在什么地方?这错在什么地方?萧文强,数学证明,1990年07月第1版,第15页 46命题命题:任何三角形皆等腰!任何三角形皆等腰!设ABC是任一三角形,作BC的中垂线DO与BAC的内角平分线AO相交于点O,47 阿贝尔对近三百年还没有解决的五次多项式方程根式求解的问题进行研究。1821年,他以为找到了五次方程的解的公式,他的老师也找不出证明中的任何纰漏,求助当时水平较高的丹麦数学家狄根,他也找不出纰漏,但凭经验他觉得应审慎处理这个困惑了三百年的难题。他回信说:阿贝尔年纪尚轻,他没有达到解决这个问题

24、的目标,但我们仍承认他是稀有的天赋奇才。我并非想阻挠他向科学院提出论文,但希望他举一个实例加以演算,以资证明,这是必要的试金石。阿贝尔听从劝告,通过实例找到了证明中的谬误。过了三年,阿贝尔得出了完全相反的结论:五次或更高次的方程一般不能以根式求解。萧文强,数学证明,1990年07月第1版,第31页48 阿贝尔由于没钱印刷,只好把内容浓缩为六页,于是文章艰涩难懂,加上印得乱七八糟,令人看不上。把文章寄给了巴黎科学院数学家柯西与勒让德。勒让德年事已高,转给柯西。柯西忙于自己的研究,看也不看扔在一旁。德国数学家雅可比恰巧也研究同一课题,他在别处看到阿贝尔的文章,十分钦佩,同时他知道阿贝尔论文早交巴黎

25、科学院,但杳无音信。便写信给勒让德,愤怒地说:如此伟大的发现,甚至可能是本世纪最伟大的发现,阿贝尔先生两年前巳向贵院提出,何以阁下与同僚对此不闻不问?他要求科学院拿出原稿。柯西找回原稿,勒让德读后惊呼:他真的找到了我长期想要解决的问题的答案,他已经做出了世界上最困难的发现,他已经找到我40年来想寻找的答案!萧文强,数学证明,1990年07月第1版,第32页49 法国大思想家卢梭描述,当我第一次通过计算发现:一个二项式的平方等于它的各项的平方和加上这两项之积的倍,根本不相信这一结果,直到我找到了一个能验证它的几何图形,情况才发生了根本变化 我最喜欢把代数看做一种纯抽象的量,但当我们果真扩大它的应

26、用范围时,我又喜欢看到这种扩展在线条上进行,否则我就什么也不能理解。2222bababa50 德国物理学家马赫巧妙地使用一根铁丝德国物理学家马赫巧妙地使用一根铁丝证明了多边形内角和定理证明了多边形内角和定理,一时传为佳话。一时传为佳话。51巧布直观背景巧布直观背景:O O是正方形的中心是正方形的中心,以以ABAB为斜边向正方形外任作一个直角为斜边向正方形外任作一个直角三角形三角形ABEABE,联结,联结OEOE,那么,不论,那么,不论E E在什么位置上,总有角在什么位置上,总有角AEO=45AEO=450 0,你相信吗?等价地说,以,你相信吗?等价地说,以ABAB为直径向正方形外作为直径向正方

27、形外作半圆,则圆周上任一点半圆,则圆周上任一点E E(与(与A A不重合)对不重合)对A A,O O 两点所张的两点所张的视角总是视角总是45450 0,你不觉得这是很怪的事吗?!你不觉得这是很怪的事吗?!取三个与三角形取三个与三角形ABEABE相同的三角形与正方形相同的三角形与正方形ABCDABCD另三另三边拼接成正方形。边拼接成正方形。那么,一目了然那么,一目了然。贺贤孝P7,852 希腊数学家帕普斯在数学汇编第四卷中介绍了一个希腊数学家帕普斯在数学汇编第四卷中介绍了一个勾股定理的推广命题勾股定理的推广命题:设三角形设三角形ABC是一任意三角形是一任意三角形,以以AB,AC为边任意作两个平

28、行四边形为边任意作两个平行四边形ABB1A1,ACC1A2。点点M是是B1A1与与C1A2的交点,连的交点,连AM,作,作BB2平行且等于平行且等于AM,BB2、BC为边作平行四边形为边作平行四边形BCC2B2,则其面积等,则其面积等于平行四边形于平行四边形ABB1A1,ACC1A2的面积之和。的面积之和。如图加上阴影线如图加上阴影线,则帕普斯的结果跃然纸上。则帕普斯的结果跃然纸上。53 笛卡儿笛卡儿 在思维的指导法则一书中所评价的在思维的指导法则一书中所评价的 用几何图形去表达这类事情是极为有利的用几何图形去表达这类事情是极为有利的,因为没有什因为没有什么东西比几何图形更容易进入人们的思维。

29、么东西比几何图形更容易进入人们的思维。数学家柯尔莫哥洛夫也指出数学家柯尔莫哥洛夫也指出:在只要有可能的地方,数学家总是力求把他们研究的在只要有可能的地方,数学家总是力求把他们研究的问题尽量地变成可借用几何直观的问题问题尽量地变成可借用几何直观的问题几何想像,或几何想像,或如同平常人们所说的几何直觉,对于几乎所有数学分科的如同平常人们所说的几何直觉,对于几乎所有数学分科的研究工作,甚至对于最抽象的工作有着重大的意义。研究工作,甚至对于最抽象的工作有着重大的意义。”贺贤孝贺贤孝P1254法国数学家罗增儒,数学的领悟,河南科学技术出版社,1997P94-9555吴振奎,吴彬,异曲同工,天津教育出版社

30、,2007,P35-3856吴振奎,吴彬,异曲同工,天津教育出版社,2007,P35-38正方体面涂色575859 刘徽析理以辞刘徽析理以辞,解体用图。长期探索九章算术的奥秘,解体用图。长期探索九章算术的奥秘,领悟其中道理,这不是推理又是什么呢领悟其中道理,这不是推理又是什么呢?析理以辞析理以辞逻辑推理逻辑推理 解体用图解体用图直观推理直观推理 两者并用,即能获致简洁清晰而又严密完整的证明了两者并用,即能获致简洁清晰而又严密完整的证明了萧文强,数学证明,1990年07月第1版,第11页60罗增儒,数学的领悟,河南科学技术出版社,1997 61 近代著名的德国数学家魏尔说得好:“逻辑是数学家为保

31、持思想强健而遵守的卫生规则。萧文强,数学证明,1990年07月第1版,第41页 所谓数学证明就是依照循守公认章法,去核实直觉是否导致正确答案的活动。我们不能否认证明的重要,但也不要把它强调为数学家的唯一活动。萧文强,数学证明,1990年07月第1版,第41页五、小结:62 戴维斯(PJ.Davis)和赫什(RHersh)说得好:在最好的情况下在最好的情况下,证明通过揭示事物的核心证明通过揭示事物的核心而增强理解证明提供新的数学初学证明的人而增强理解证明提供新的数学初学证明的人变得更加接近于新数学的创造证明是数学的力变得更加接近于新数学的创造证明是数学的力量,是这门学科用来赋予定理的静态断言以活

32、力量,是这门学科用来赋予定理的静态断言以活力的电压的电压戴再平.数学方法与解题研究.高等教育出版社,1996年04月第1版.P7163 法国数学家勒贝格说道:每当碰到有新发现,便需要引进逻辑作为控制,只有凭逻辑才能最终决定这发现是正确的,还是仅为幻象而已。因此,逻辑的作用虽重要,毕竟是次要吧。德国数学家克莱因:在某种意义上说,数学的进展主要归功于那些以直觉能力著称的人多于那些以严谨证明著称的人。英国数学家德摩根甚至说:数学的原动力是想像力而不是推理。萧文强,数学证明,1990年07月第1版,第41页 64 物理学家狄拉克:我不管什么证明,我只想知道真相!也有人说:为什么数学家斤斤计较理论基础呢

33、?即使明天你为什么数学家斤斤计较理论基础呢?即使明天你忽然发现集合论的公理全盘给否定了,凭着数学建成忽然发现集合论的公理全盘给否定了,凭着数学建成的桥梁屋宇还不是好端端的矗立不倒吗?的桥梁屋宇还不是好端端的矗立不倒吗?萧文强,数学证明,1990年07月第1版,第35页65 数学证明的主要功用不在于核实命题所以 我们不难明白,为什么尽管证明并非完全客观也并非完全可靠,数学还是健康茁壮地成长。数学理论并非像一条项链,断了一环便整条项链不再连在一起。数学理论倒像一团乱丝,剪断了一段并没有把该段分离,因为它的另一端勾另一条又连在一起。那么证明的主要功用在于什么?它的更大用途在于使人通过它去理解命题。萧

34、文强,数学证明,1990年版,第42页66 每个数学工作者都知道,单是验证了一个数学证明的逐步逻辑推导,却没有试图洞察获致这一连串推导的背后意念,并不算理解了那个数学证明。若能在这个意义下理解了证明,也就是理解了要证明的命题。萧文强,数学证明,1990年版,第43页67 证明其实绝不是仅供事后核实,它也在发现过程中作出贡献。总的来说,最理想的境界,是能严密地证明从直观得来的猜想,也能直观地理解一个形式的证明。萧文强,数学证明,1990年版,第45页68 美国数学家怀持(Wilder)写过一本书,题为数学概念的演化(Evo1ution of Mathematical Concepts,1968年),书里有句很有意思的话:我们不要忘记,所谓证明,不只在不同的文化有不我们不要忘记,所谓证明,不只在不同的文化有不同的含意,就连在不同的时代也有不同的含意。同的含意,就连在不同的时代也有不同的含意。萧文强,数学证明,江苏教育出版社,1990年07月第1版,第4页

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(第七讲--数学证明与趣谈课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|