4-先进控制系统课件.ppt

上传人(卖家):晟晟文业 文档编号:5203568 上传时间:2023-02-17 格式:PPT 页数:50 大小:1.28MB
下载 相关 举报
4-先进控制系统课件.ppt_第1页
第1页 / 共50页
4-先进控制系统课件.ppt_第2页
第2页 / 共50页
4-先进控制系统课件.ppt_第3页
第3页 / 共50页
4-先进控制系统课件.ppt_第4页
第4页 / 共50页
4-先进控制系统课件.ppt_第5页
第5页 / 共50页
点击查看更多>>
资源描述

1、控制工程概论控制工程概论-先进控制系统先进控制系统1)计算机技术的发展,)计算机技术的发展,DCS和和PLC等的出现;等的出现;2)现代控制理论的诞生,控制理论和应用都有很)现代控制理论的诞生,控制理论和应用都有很大发展;大发展;3)过程工业向大型化和精细化方向发展。)过程工业向大型化和精细化方向发展。先进控制系统的提出先进控制系统的提出系统辨识系统辨识自适应控制自适应控制内模控制内模控制软测量推断控制软测量推断控制包含的主要控制方法包含的主要控制方法预测控制预测控制最优控制最优控制故障诊断与容错控制故障诊断与容错控制System Identification建立模型的途径建立模型的途径机理建

2、模(白箱)机理建模(白箱)系统辨识和参数估计(黑箱)系统辨识和参数估计(黑箱)机理建模与系统辨识相结合(灰箱)机理建模与系统辨识相结合(灰箱)辨识的定义辨识的定义Zadeh(1962),系统辨识是在输入和输出数据的基础上,系统辨识是在输入和输出数据的基础上,从一类模型中确定一个与所观测系统等价的模型。从一类模型中确定一个与所观测系统等价的模型。Ljung(1978),系统辨识有三个要素,系统辨识有三个要素-数据、模型类和准数据、模型类和准则,即根据某一准则,利用实测数据,在模型类中选取则,即根据某一准则,利用实测数据,在模型类中选取一个拟合得最好的模型。一个拟合得最好的模型。辨识的三要素辨识的

3、三要素输入输出数据(辨识的基础)输入输出数据(辨识的基础)模型类(寻找模型的范围)模型类(寻找模型的范围)等价准则(辨识的优化目标)等价准则(辨识的优化目标)辨识目的辨识目的验前知识验前知识实验设计实验设计模型类选择模型类选择参数估计参数估计模型验证模型验证例:热交换器例:热交换器 建立一个热交换器的数学模型,即建立建立一个热交换器的数学模型,即建立T/Q模型,经观测得到一组输入输出数据,记作模型,经观测得到一组输入输出数据,记作Q(k)和和T(k),k=1,2,L。输入输出数据:输入输出数据:选定一组模型类:选定一组模型类:)()()1()()1()(11kenkQbkQbnkTakTakT

4、nnLknnLknkQbkQbnkTakTakTkeJ121112)()1()()1()()(一个等价准则:一个等价准则:辨识问题:辨识问题:根据所观测到的数据根据所观测到的数据Q(k)和和T(k),确定模型中的,确定模型中的未知参数未知参数n及及ai、bi,使得准则,使得准则J最小。最小。T(k)+a1T(k-1)+anT(k-n)=b1Q(k-1)+bnQ(k-n)+e(k)辨识的基本原理辨识的基本原理通常采用逐步逼近的办法。通常采用逐步逼近的办法。辨识的分类辨识的分类离线辨识、在线辨识;离线辨识、在线辨识;非参数模型辨识、参数模型辨识。非参数模型辨识、参数模型辨识。辨识的分类辨识的分类阶

5、跃响应、脉冲响应、频率响应、相关分析、谱分析等。阶跃响应、脉冲响应、频率响应、相关分析、谱分析等。非参数模型辨识(经典辨识)非参数模型辨识(经典辨识):假定过程是线性的前提:假定过程是线性的前提下,不必事先确定模型具体结构。下,不必事先确定模型具体结构。辨识的分类辨识的分类最小二乘法、梯度校正法、极大似然法等。最小二乘法、梯度校正法、极大似然法等。参数模型辨识(现代辨识)参数模型辨识(现代辨识):必须假定一种模型结构,:必须假定一种模型结构,通过极小化误差准则来确定模型参数。通过极小化误差准则来确定模型参数。什么是阶跃响应法什么是阶跃响应法 施加一个阶跃扰动信号,测定出过程的输出响应随施加一个

6、阶跃扰动信号,测定出过程的输出响应随时间的变化曲线,该曲线就是利用阶跃响应法得到的非时间的变化曲线,该曲线就是利用阶跃响应法得到的非参数模型,再根据该曲线获得待辨识过程的传递函数。参数模型,再根据该曲线获得待辨识过程的传递函数。实验测取过程的阶跃响应实验测取过程的阶跃响应合理选择阶跃信号幅度合理选择阶跃信号幅度多次重复实验多次重复实验由阶跃响应求过程的传递函数由阶跃响应求过程的传递函数若曲线规则:可用近似法、切线法、两点法等若曲线规则:可用近似法、切线法、两点法等若曲线不规则:可用面积法若曲线不规则:可用面积法近似法近似法K=y()-y(0)/u取取y(t)=0.632y()时对应的时对应的

7、t 就是过程的时间常数就是过程的时间常数T。TsKsG1)(0 T/2 T2T3T4T5T6T7Ty(0)0.39y()0.63y()0.87y()y()ty近似法近似法在响应曲线的拐点处作一切线,在响应曲线的拐点处作一切线,0L为为值,切线值,切线ML在时在时间轴上的投影是间轴上的投影是T。seTsKsG1)(两点法两点法seTsKsG1)(2121122112 MMMtMtMMttT)1ln(11KyM)1ln(22KyM最小二乘法最小二乘法 )(1)(2211122111bbaannnnzbzbzbzBzazazazA)()()()()(11knkuzBkzzA u(k)和和z(k)是过

8、程的输入输出量,是过程的输入输出量,n(k)是噪声是噪声;要解决的问题是如何利用过程的输入、输出数据,确定要解决的问题是如何利用过程的输入、输出数据,确定A(z-1)和和B(z-1)的系数。的系数。)()()(knkkzTh ,)(,),1(),(,),1()(2121TnnTbababbbaaankukunkzkzkhLLLnHzTLTLLnnnLzzz)(,),2(),1()(,),2(),1(nz)()1()()1()2()1()2()1()1()0()1()0()()2()1(bababaTTTLnLuLunLzLznuunzznuunzzLhhhHLkTkkzJ12)()()(h)(

9、)()(HzHzLLTLLJLSmin)(LSJ0HzHzLSLSLLTLLJ)()()()()(LLLTLLSzHHH1)(最小二乘法最小二乘法设有设有,使,使,则有,则有最小二乘法的递推算法最小二乘法的递推算法基本思想可以表示成:基本思想可以表示成:当前估计值当前估计值 =上一时刻估计值上一时刻估计值 +修正项修正项)(k)1(k每获得一次新的观测数据就修正一次参数估计值,随着时间每获得一次新的观测数据就修正一次参数估计值,随着时间的推移,便能获得满意的辨识结果。的推移,便能获得满意的辨识结果。最小二乘法的递推算法最小二乘法的递推算法)1()()()()1()(kkkzkkkThK )1(

10、)()()()()1()()()1()(-1kkkkkkkkkkTTPhKIPIhPhhPK当前估计值当前估计值上一时刻估计值上一时刻估计值修正值修正值System IdentificationModule Predictive Control预测控制的基本出发点预测控制的基本出发点 通常的通常的PID控制,是根据过程控制,是根据过程当前当前的和的和过去过去的输出的输出测量值和设定值的偏差来确定当前的控制输入。测量值和设定值的偏差来确定当前的控制输入。预测控制不但利用预测控制不但利用当前当前的和的和过去过去的偏差值,而且还的偏差值,而且还利用预测模型来预估过程利用预测模型来预估过程未来未来的偏

11、差值,以滚动优化确的偏差值,以滚动优化确定当前的最优输入策略。定当前的最优输入策略。预测控制的基本结构预测控制的基本结构预测控制的思路预测控制的思路三要素:三要素:预测模型预测模型 滚动优化滚动优化 反馈校正反馈校正未来未来 yu过去过去k 时刻时刻预测控制的思路预测控制的思路三要素之一:预测模型三要素之一:预测模型 功能功能 根据当前时刻的控制输入及过程的历史信息,预测过程输根据当前时刻的控制输入及过程的历史信息,预测过程输出的未来值出的未来值 形式形式 非参数模型:脉冲响应、阶跃响应非参数模型:脉冲响应、阶跃响应 参数模型:微分方程、差分方程参数模型:微分方程、差分方程未来未来 yu过去过

12、去k 时刻时刻三要素之二:滚动优化三要素之二:滚动优化 滚动优化的目的滚动优化的目的通过某性能指标的最优来确定未通过某性能指标的最优来确定未来的控制作用来的控制作用参考轨迹、控制能量最小等参考轨迹、控制能量最小等 滚动优化的方法滚动优化的方法有限时段的优化,反复在线运行有限时段的优化,反复在线运行每一步实现的是静态优化每一步实现的是静态优化全局动态优化全局动态优化uyryk+1时刻优化时刻优化k+1kt/Tuyryk时刻优化时刻优化三要素之三:反馈校正三要素之三:反馈校正 每个采样时刻,都对预测输出进行修正每个采样时刻,都对预测输出进行修正补偿输出补偿输出校正模型参数校正模型参数yukk+1e

13、t/T 实现闭环优化实现闭环优化预测输出不仅基于模预测输出不仅基于模型,而且利用了反馈型,而且利用了反馈信息信息常见的预测控制算法常见的预测控制算法-动态矩阵控制(动态矩阵控制(Dynamic Matrix Control,DMC)-模型算法控制(模型算法控制(Model Algorithmic Control,MAC)-广义预测控制(广义预测控制(Generalized Predictive Control,GPC)-预测函数控制(预测函数控制(Predictive Functional Control,PFC)-广义预测极点配置控制(广义预测极点配置控制(Generalized Predi

14、ctive Pole-placement Control,GPPC)-其他其他DMC概述概述-由由Cutler等人提出等人提出-首先应用(首先应用(1974)于)于Shell Development Co.-是一种基于对象是一种基于对象阶跃响应阶跃响应的预测控制算法,适用于的预测控制算法,适用于渐进渐进稳定稳定的的线性对象线性对象。DMC的原理与算法的原理与算法预测模型:预测模型:有限集合有限集合aT=a1,a2,aN 中的参数可完全描述系统的中的参数可完全描述系统的动态特性,动态特性,N 称为建模时域。称为建模时域。y0123a3a2 a1 NN-1aNaN-1t/T)(aaNDMC的原理与

15、算法的原理与算法预测模型:预测模型:Nikiky,2,1 ),(0Nikuakikykikyi,2,1 ),(01利用线性叠加性质:利用线性叠加性质:k 时刻时,假定控制作用不变,对时刻时,假定控制作用不变,对N 个时刻的输出预测为:个时刻的输出预测为:当当k 时刻有一控制作用时刻有一控制作用u(k)时,对时,对N 个时刻的输出预测为:个时刻的输出预测为:DMC的原理与算法的原理与算法预测模型:预测模型:)(01kuakNkykNkyNkky|11 k k+1k+2 k+3 k+Nt/Ta1u(k)kNky|0kky|10kky|20kky|30a2u(k)a3u(k)aNu(k)kNky|1

16、kky|21kky|31DMC的原理与算法的原理与算法预测模型:预测模型:aN-M+1u(k+M-1)aN-1u(k+1)aNu(k)a1u(k)a2u(k)a3u(k)kNky|0kky|10kky|20kky|30a1u(k+1)a2u(k+1)a1u(k+2)kkyM|1kkyM|2kkyM|3kNkyM|k k+1k+2 k+3 k+Nt/TNijkuakikykikyiMjjiM,2,1 ,)1()()(),min(110若有若有M个连续个连续控制增量控制增量u(k),u(k+1),u(k+M-1)作用,作用,未来各时刻的未来各时刻的预测输出预测输出DMC的原理与算法的原理与算法滚动

17、优化:滚动优化:在时刻在时刻k,要确定从该时刻起的,要确定从该时刻起的 M 个控制增量个控制增量 u(k),u(k+1),u(k+M-1),使被控对象在其作用下未来,使被控对象在其作用下未来 P 个个时刻的输出预测值时刻的输出预测值 尽可能接近尽可能接近给定的期望值给定的期望值 。M称为称为控制时域控制时域,P称为称为优化时域优化时域,MPN。)(kikyMPiik,2,1 ),(DMC的原理与算法的原理与算法滚动优化:滚动优化:u(k+M-1)u(k+i)(iM-1)u(k)u(k)u(k+1)u(k+1)控制时域控制时域优化时域优化时域 k k+Mk+Pt/TkkyM|1kkyM|2kPk

18、yM|u(k+1)y(k+2)(k+P)(minkJP12)()(iMkikyikMjjku12)1(iqjrDMC的原理与算法的原理与算法滚动优化:滚动优化:)()()(0kkkMPPMuAyyMPMPPPPMMPMaaaaaakPkykkykkPkykkyk11121000000 )()1()()()1()(Ayy优化变量为优化变量为uM(k)=u(k),u(k+1),u(k+M-1)T优化目标为优化目标为min J(k)预测模型预测模型写为矩阵形式:写为矩阵形式:DMC的原理与算法的原理与算法滚动优化:滚动优化:220)()()()(RQuuAykkkkMMPP22)()()()(min

19、RQuykkkkJMPMP),(),()()1()(11MPTPrrdiagqqdiagPkkkRQ0u)(/)(kdkdJM)()()()(01kkkPPTTMyQARQAAu已知的已知的 DMC的原理与算法的原理与算法滚动优化:滚动优化:只需只需u(k)构成实际控制量构成实际控制量u(k)=u(k-1)+u(k)作用于对象作用于对象其中,其中,可以离线进行计算。,可以离线进行计算。)()()(0 0 1)(0kkkkuPPTMyduQARQAAdTTT1)(0 0 1 DMC的原理与算法的原理与算法反馈校正:反馈校正:若将若将u u(k k)实际加于对象输入端,利用实际加于对象输入端,利用

20、预测模型预测模型:可作为可作为k k+1+1时刻的初始预测值进行新的优化计算,但实际值与预测时刻的初始预测值进行新的优化计算,但实际值与预测值有可能存在偏差,所以需要对其进行修正:值有可能存在偏差,所以需要对其进行修正:其中,其中,)()()(01kukkNNayy)1()()1(1kekkNcorhyy)1()1()1(1kkykykeNcorcorcorhhkNkykkyk ,)1()11()1(1hy校正向量校正向量 DMC的原理与算法的原理与算法反馈校正:反馈校正:将将 移位:移位:其中,其中,移位矩阵移位矩阵)1(kcory)1()1(0kkcorNySy100011000010SD

21、MC的实现的实现预处理预处理对不稳定的对象,待稳定后实施预测控制对不稳定的对象,待稳定后实施预测控制对非线性对象,在工作点处线性化对非线性对象,在工作点处线性化采样周期采样周期一般选择一般选择T使模型维数在使模型维数在2530之间之间确定动态矩阵确定动态矩阵测试被控对象的阶跃响应测试被控对象的阶跃响应DMC的实现的实现选择参数初值选择参数初值优化时域优化时域P:重要参数,在:重要参数,在1,2,4,8,序列中选择,应包含对序列中选择,应包含对象的主要动态特性象的主要动态特性控制时域控制时域M:P,一般,一般M12(单调特性对象)或(单调特性对象)或M34(振荡特性对象)(振荡特性对象)误差权矩

22、阵误差权矩阵Q:等权重、只考虑后面几项:等权重、只考虑后面几项控制权矩阵控制权矩阵R:一般较小一般较小计算计算d按照公式计算按照公式计算QARQAAdTTT1)(0 0 1 DMC的实现的实现-初始化初始化-控制量的在线计算控制量的在线计算以预测控制为核心思想的先进控制商品化软件包:以预测控制为核心思想的先进控制商品化软件包:第一代模型预测控制技术第一代模型预测控制技术 以以IDCOM和和DMC为代表,主要处理无约束过程的预测控制。为代表,主要处理无约束过程的预测控制。第二代模型预测控制技术第二代模型预测控制技术 QDMC算法,采用二次规划方法(算法,采用二次规划方法(QP)求解,可以系统地处

23、)求解,可以系统地处理输入、输出约束问题。理输入、输出约束问题。第三代模型预测控制技术第三代模型预测控制技术 IDCOM-M,DMC,SMCA等控制软件包等控制软件包,处理约束的多变,处理约束的多变量、多目标、多控制模式和基于模型预测的最优控制器。量、多目标、多控制模式和基于模型预测的最优控制器。第四代模型预测控制技术第四代模型预测控制技术 DMC-pllus,RMPCT等等。基于。基于Windows的图形用户界面;采用的图形用户界面;采用多层优化,以实现不同等级目标控制;采用灵活的优化方法;多层优化,以实现不同等级目标控制;采用灵活的优化方法;直接考虑模型不确定性直接考虑模型不确定性(鲁棒控制设计鲁棒控制设计);改进的辨识技术等。;改进的辨识技术等。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(4-先进控制系统课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|