工作心肌细胞的动作电位课件.ppt

上传人(卖家):晟晟文业 文档编号:5205882 上传时间:2023-02-17 格式:PPT 页数:82 大小:1.82MB
下载 相关 举报
工作心肌细胞的动作电位课件.ppt_第1页
第1页 / 共82页
工作心肌细胞的动作电位课件.ppt_第2页
第2页 / 共82页
工作心肌细胞的动作电位课件.ppt_第3页
第3页 / 共82页
工作心肌细胞的动作电位课件.ppt_第4页
第4页 / 共82页
工作心肌细胞的动作电位课件.ppt_第5页
第5页 / 共82页
点击查看更多>>
资源描述

1、第九章 心肌的生物电活动 图图9-1 人和哺乳动物血液循环系统组成模式图人和哺乳动物血液循环系统组成模式图 血液循环的功能血液循环的功能1.物质运输物质运输2.维持内环境稳态维持内环境稳态3.调节体温调节体温 4.内分泌功能内分泌功能第一节第一节 心肌细胞的分类及各类心肌细胞的电活动特点心肌细胞的分类及各类心肌细胞的电活动特点一、心肌细胞分类一、心肌细胞分类p 快反应非自律细胞(快反应非自律细胞(fast response non-autorhythmic cell)p 快反应自律细胞(快反应自律细胞(fast response autorhythmic cell)p 慢反应自律细胞(慢反应自

2、律细胞(slow response autorhythmic cell)房室结区的慢反应细胞具有自律性房室结区的慢反应细胞具有自律性 以前的研究显示,房室结标本不表现自律性。但经过深入研究发现,游离以前的研究显示,房室结标本不表现自律性。但经过深入研究发现,游离的单个房室结慢反应细胞具有和窦房结细胞相似的自律性。在整体和组织水平的单个房室结慢反应细胞具有和窦房结细胞相似的自律性。在整体和组织水平上房室结不表现自律性的原因,一是房室结区细胞和房结区细胞与普通心房肌上房室结不表现自律性的原因,一是房室结区细胞和房结区细胞与普通心房肌细胞之间的电耦联程度高,一是心房肌细胞的静息电位(细胞之间的电耦联

3、程度高,一是心房肌细胞的静息电位(-80-90 mV)远负)远负于房室交界区的最大舒张电位(于房室交界区的最大舒张电位(-60-70 mV),因而前者对后者的电紧张影),因而前者对后者的电紧张影响阻碍了后者的舒张期去极化,致使在体及组织水平的房室结细胞不表现自律响阻碍了后者的舒张期去极化,致使在体及组织水平的房室结细胞不表现自律性,而仅发挥从心房到心室的的传导作用。因此,应该纠正过去的错误概念性,而仅发挥从心房到心室的的传导作用。因此,应该纠正过去的错误概念(即认为房室结区的慢反应细胞没有自律性);正确的概念应该是:房室结区(即认为房室结区的慢反应细胞没有自律性);正确的概念应该是:房室结区的

4、慢反应细胞具有自律性,但在整体和组织水平,这种自律性不表现出来。的慢反应细胞具有自律性,但在整体和组织水平,这种自律性不表现出来。二、工作心肌细胞的电活动特点二、工作心肌细胞的电活动特点(一)内向整流钾通道(一)内向整流钾通道(IK1)与静息电位)与静息电位 静息电位产生的两个关键条件:静息电位产生的两个关键条件:1.细胞膜内外具有明显细胞膜内外具有明显K+浓度差浓度差 2.静息时膜对静息时膜对K+有通透性有通透性表表9-1 心肌细胞内、外几种主要离子的浓度及其平衡电位心肌细胞内、外几种主要离子的浓度及其平衡电位-浓度(mmol/L)离子 -平衡电位(mV)细胞内液 细胞外液-Na+10 14

5、5 +67 K+150 4 -94 Ca2+10-4 1.8 +130 Cl-20 120 -47-注:表中Ca2+浓度指胞浆内游离Ca2+浓度图图9-3.豚鼠心室肌细胞内向整流钾电流豚鼠心室肌细胞内向整流钾电流IK1上:不同超极化和去极化脉冲引起的IK1离子流(基线以下为内向电流,以上为外向电流)。下:IK1的电流-电压曲线。Em:膜电位。Eth:阈电位(注意去极化时曲线的内向移位)“整流整流”的概念的概念 “整流整流”(rectification)一词来源于电子学,如人们熟知的二极管的整流作用,可将交流电变为直流电。欧姆定律:欧姆定律:I=V/R。当电阻不变时,电流与电压呈正比(直线关系)

6、。如果这种关系不成直线而呈曲线,即为整流。内向整流内向整流(inward rectification):随着电压的增大而电流的增加量比按直线关系的预期值减少(电流-电压关系曲线向下弯曲)。外向整流外向整流(outward rectification):随着电压的增大而电流的增加量比预期增大(电流-电压关系曲线向上弯曲)。静息期细胞膜的电活动静息期细胞膜的电活动 钠背景电流钠背景电流(Na+background current):部分抵消了细胞内的负电荷,可能是静息电位实测值低于理论值的重要原因之一。钠钠-钾泵钾泵(sodium-potassium pump)活动:钠-钾泵活动时,通过耗能将细胞

7、内多余的Na+驱出细胞,将部分动作电位期间流到细胞外的K+泵入细胞内。钠-钾泵活动时泵出的Na+数多于泵入的K+数,于是形成一个外向电流,称为泵电流泵电流(pump current,Ipump),这种泵电流使膜电位发生一定程度的超极化,但一般不超过10 mV。钠钠-钙交换钙交换:由钠钠-钙交换体钙交换体(Na+-Ca2+exchanger)介导,是3个Na+和1个Ca2+的跨膜交换,因而也是一种电荷不对称性交换,具有生电性。(二)工作心肌细胞的动作电位(二)工作心肌细胞的动作电位 分0、1、2、3、4期 去极相(0期)复极相(1、2、3、4期)具有较长的平台期和有效不应期,因此心肌不会发生强直

8、收缩,动作电位时程动作电位时程(action potential duration,APD)可达200ms以上。动作电位幅度动作电位幅度(action potential amplitude,APA)(可达120 mV),超射(overshoot)约30 mV图图9-4 9-4 心肌细胞动作电位模式图心肌细胞动作电位模式图A:心室肌;B:窦房结;C:心房肌 横轴:B的扫描速度为A、C的一半图图9-5.人右心室心外膜下(人右心室心外膜下(A)、中层()、中层(B)和心内膜下()和心内膜下(C)心肌细胞动作电位)心肌细胞动作电位可见各层心肌的动作电位形态有差异,且动作电位时程随刺激频率(Hz)的加

9、快而缩短。图图9-2.心脏特殊传导组织、各部位心肌细胞动作电位图形特点及其与心电图波形的关系心脏特殊传导组织、各部位心肌细胞动作电位图形特点及其与心电图波形的关系图中数字表示窦房结的兴奋冲动传至心脏不同部位时所需要的时间(秒)(3)去极化和快钠离子流:)去极化和快钠离子流:电压门控钠通道电压门控钠通道(voltage-gated Na+channel,INa通道)开放,Na+快速流入细胞 阈电位阈电位(threshold potential)约为-70 mV 钠通道的三种功能状态:钠通道的三种功能状态:备用备用(静息):通道关闭,但受到刺激可以开放。包括复复 活活(reactivation)状

10、态。激活激活:开放失活失活:通道处于不仅关闭、而且受到刺激也不能开放。失活的快钠通道的再度开启 钠通道阻断剂:河豚毒(钠通道阻断剂:河豚毒(TTX)图图9-6.小鼠心室肌细胞快钠电流小鼠心室肌细胞快钠电流图示不同的去极化箝制电压引起不同大小的快钠内流(4 4)复极化及其离子流机制:)复极化及其离子流机制:1)1期(期(phase 1)复极化:)复极化:主要由瞬时外向离子流主要由瞬时外向离子流(transient outward current,Ito),Ito的载荷离子是K+。INa通道的失活和Ito通道的激活共同形成了1期。Ito通道也具有激活门和失活门,通道在激活后很快就失活关 闭,故名“

11、瞬时性”通道。图图9-7.大鼠心室肌细胞的大鼠心室肌细胞的Ito电流电流图示不同的去极化箝制电压引起不同水平的Ito电流,其中Ito2成分已被消除Ito通道亚型:通道亚型:p Ito1(Ito-f):是上述):是上述Ito的快成分和主要成分,其选择性阻断剂的快成分和主要成分,其选择性阻断剂是是4-氨基吡啶(氨基吡啶(4-aminopyridine,4-AP)。)。Ito1通道由通道由Kv4.2或或/和和Kv4.3蛋白构成通道孔洞。蛋白构成通道孔洞。p Ito2(Ito-s):是):是Ito的慢成分,的慢成分,Ito2通道是一种通道是一种钙激活氯通道钙激活氯通道,即由细胞内即由细胞内Ca2+浓度

12、增加而激活的浓度增加而激活的Cl-流(流(ICl-Ca),可被氯通道),可被氯通道阻断剂阻断。阻断剂阻断。Ito2的电流微弱且短暂,可能和的电流微弱且短暂,可能和1期与期与2期的切迹形期的切迹形成有关。但在细胞内钙超载时,成有关。但在细胞内钙超载时,Ito2幅值增大,使动作电位时程幅值增大,使动作电位时程缩短,从而减少缩短,从而减少L-型钙离子流内流的时间,从而减少型钙离子流内流的时间,从而减少Ca2+内流量。内流量。这可能是缓冲胞内钙超载的一种负反馈机制。这可能是缓冲胞内钙超载的一种负反馈机制。2)2期复极化期复极化:很缓慢,形成平台(:很缓慢,形成平台(plateau),也称为平),也称为

13、平台期(台期(plateau phase)。)。主要离子流:主要离子流:L型钙电流型钙电流(long-lasting Ca2+current,L-type Ca2+current,ICa-L):):Ca2+内流:内流:IK1:由于:由于IK1通道的内向整流特性,阻止了通道的内向整流特性,阻止了K+的进一步外的进一步外流,从而使动作电位流,从而使动作电位2期内少量的期内少量的Ca2+内流就使膜电位保持内流就使膜电位保持在去极化状态的平台,甚或向上隆起形成圆顶。随着动作电在去极化状态的平台,甚或向上隆起形成圆顶。随着动作电位复极化到接近静息电位时,内向整流现象解除,位复极化到接近静息电位时,内向整

14、流现象解除,K+又可经又可经IK1通道外流而加速最后的复极化过程。通道外流而加速最后的复极化过程。延迟整流钾电流延迟整流钾电流(delayed rectifier K+current,IK)图图9-9.心室肌细胞动作电位时程中心室肌细胞动作电位时程中ICa-L幅值的变化幅值的变化图图9-8.心室肌细胞动作电位时程中心室肌细胞动作电位时程中IK1幅值的变化幅值的变化注:由于内向整流特性,从动作电位去极化到平台期,IK1幅值锐减;在3期后期,内向整流现象消除,而驱使IK1外流的动力大于静息状态,所以IK1幅值暂时超过正常。3)3期复极化期复极化 约需100150 ms 3期复极化主要是由于Ca2+

15、内流逐渐停止和K+外流逐渐增加所致 延迟整流钾通道延迟整流钾通道(delayed rectifier K+channel,IK通道)是3期K+外流的主要通道 图图9-10.狗心室肌细胞动作电狗心室肌细胞动作电位复极化过程中延迟整流钾电位复极化过程中延迟整流钾电流流IKr和和IKs幅值的变化幅值的变化IK通道亚型:通道亚型:快速延迟整流钾通道快速延迟整流钾通道(rapid delayed rectifier K+channel,IKr通道):IKr通道蛋白中组成通道孔洞的亚基(a亚基)由HERG基因编码,HERG基因突变可导致型长QT综合征。IKr的选择性阻断剂是E-4031。2.缓慢延迟整流钾

16、通道缓慢延迟整流钾通道(slow delayed rectifier K+channel,IKs通道):人类IKs通道的a亚基由KvLQT1基因编码,而辅助亚基由Mink基因编码;KvLQT1基因的某种突变会导致I型长QT综合征;Mink基因突变可导致V型长QT综合征。IKr通道和IKs通道是完全不同的两种通道,因二者在启闭动力学上有某种重叠,因而如果不用选择性阻断剂加以区分,可记录到一个IKr和IKs的混合电流。IKr的电流幅值远大于IKs,且二者的激活速率快慢有差别。4)4期(静息期)期(静息期)此时膜电位复极化至静息电位并稳定在此电位水平此时膜电位复极化至静息电位并稳定在此电位水平 离子

17、泵离子泵(特别是(特别是钠钠-钾泵钾泵和和钙泵钙泵)离子交换体离子交换体(如钠(如钠-钾交换体,钠钾交换体,钠-钙交换体等)钙交换体等)将将Na+移出,并将流至膜外的移出,并将流至膜外的K+移入,将胞质内升高的移入,将胞质内升高的Ca2+移出细胞或移出细胞或/和移入肌质网的钙池,使胞质内的离子水和移入肌质网的钙池,使胞质内的离子水平恢复到高钾、低钠和低钙的静息正常水平。平恢复到高钾、低钠和低钙的静息正常水平。图图9-11 心室肌细胞跨膜电位形成心室肌细胞跨膜电位形成的离子流基础示意图的离子流基础示意图注:在基线以下的离子流为内向电流,在在基线以上的离子流为外向电流;INa/Ca基本上是内向电流

18、,只有在动作电位去极化时反转,成为一过性外向电流。三、自律心肌细胞的电活动三、自律心肌细胞的电活动(二)自律心肌细胞的舒张期自动去极化活动(二)自律心肌细胞的舒张期自动去极化活动 If通道与快反应自律细胞的舒张期自动去极化通道与快反应自律细胞的舒张期自动去极化 最大舒张电位最大舒张电位(maximal diastolic potential)普肯耶细胞的舒张期自动去极化机制:现在认为是If(内向电流)和IK(外向电流)共同作用的结果,但以If为主 If通道:在超极化时激活,是一种超极化激活的阳离子通道超极化激活的阳离子通道(hyperpolarization-activated cation

19、channel,Ih channel),允许Na+和K+通过,因此If电流是一种内向Na+流和外向K+流的混合离子流,但以Na+内流为主图图9-12 普肯耶细胞起搏原理示意图普肯耶细胞起搏原理示意图上:普肯耶细胞跨膜电位;下:A代表If的离子电导;B代表IK的钾电导图图9-13 人窦房结起搏细胞的人窦房结起搏细胞的If离子流离子流A:上为阶梯式箝制电压,下为记录到的If电流。B:If的电流-电压曲线,Istep为阶梯式电压刺激引起的If电流,Itail为尾流2.慢反应自律细胞的舒张期自动去极化机制慢反应自律细胞的舒张期自动去极化机制 至少与至少与IK、If和和ICa-L三种离子流有关:三种离子

20、流有关:(1)IK电流的去激活衰减:外向电流电流的去激活衰减:外向电流(2)If离子流的激活:离子流的激活:Na+内流为主,内流为主,K+外流为辅。外流为辅。P细胞的细胞的If电流幅值远小于普肯耶细胞电流幅值远小于普肯耶细胞(3)ICa-T离子流(离子流(transient Ca2+current,T-type Ca2+current,ICa-T):ICa-T通道的激活电通道的激活电 位约为位约为-50 mV,ICa-T通道开放后形成一个短通道开放后形成一个短 暂、微弱的内向暂、微弱的内向Ca2+电流,可能参与电流,可能参与P细胞的细胞的 起搏活动。起搏活动。阻断剂:Ni2+和miberfra

21、dil 图图9-14 窦房结窦房结P细胞舒张期去极化和动作电位发生原理示意图细胞舒张期去极化和动作电位发生原理示意图(引自姚泰:生理学第一版,北京,人民卫生出版社,2005)第二节第二节 心肌的电生理学特性心肌的电生理学特性兴奋性兴奋性 传导性 自律性 机械特性:收缩性电生理学特性电生理学特性 一、心肌的兴奋性一、心肌的兴奋性(一)心肌的兴奋性取决于(一)心肌的兴奋性取决于:1.离子通道的性状离子通道的性状 2.静息电位(或最大舒张电位)和阈电位之间的差值静息电位(或最大舒张电位)和阈电位之间的差值(二)心肌的兴奋性在整个动作电位过程中呈现规律性的变化(二)心肌的兴奋性在整个动作电位过程中呈现

22、规律性的变化绝对不应期(绝对不应期(absolute refractory period,ARP)有效不应期(有效不应期(effective refractory period,ERP)相对不应期(相对不应期(relative refractory period,RRP)超常期(超常期(supernormal period,SNP)图图9-15 心室肌细胞动作电位过程中兴奋性的变化及其与机械收缩的关系心室肌细胞动作电位过程中兴奋性的变化及其与机械收缩的关系A:动作电位;B:机械收缩;ARP:绝对不应期;ERP:有效不应期;LRP:局部反应期;RRP:相对不应期;SNP:超长期(三)心肌有效不应

23、期长的生理学意义(三)心肌有效不应期长的生理学意义 1.心肌不发生强直收缩心肌不发生强直收缩 2.期前收缩和代偿间歇期前收缩和代偿间歇 期前收缩期前收缩(premature systole),简称早搏室性早搏室性早搏(premature ventricular contraction,PVC)房性早搏房性早搏(premature atrial contraction,PAC)交界性早搏交界性早搏(junctional extrasystole)代偿性间歇代偿性间歇(compensatory pause)图图9-16 期前收缩和代偿间歇期前收缩和代偿间歇额外刺激a、b、c落在有效不应期内,不引起

24、反应;额外刺激d落在相对不应期内,引起期前收缩和代偿间歇(四)心肌的兴奋性的影响因素(四)心肌的兴奋性的影响因素 1.细胞外液电解质浓度细胞外液电解质浓度(1)钾离子:)钾离子:细胞外高钾:细胞外高钾:轻度高钾轻度高钾:兴奋性增高(轻度去极化):兴奋性增高(轻度去极化)重度高钾重度高钾:兴奋性降低甚至丧失(重度:兴奋性降低甚至丧失(重度 去极化)去极化)细胞外低钾:细胞外低钾:IK1通道对通道对K+的通透性降低,的通透性降低,K+循循IK1通道通道外流减少,膜电位去极化,兴奋性升高。外流减少,膜电位去极化,兴奋性升高。APD延长,延长,Q-T间期延长,间期延长,T波低平。波低平。(2)钙离子:

25、)钙离子:细胞外高钙:细胞外高钙:Ca2+对快钠通道的屏障作用加强,使阈对快钠通道的屏障作用加强,使阈电位水平上移,静息电位与阈电位之间的距离增大,电位水平上移,静息电位与阈电位之间的距离增大,故心肌的兴奋性降低。故心肌的兴奋性降低。细胞外低钙:细胞外低钙:轻、中度低钙轻、中度低钙:阈电位水平下移,静息电位与阈电:阈电位水平下移,静息电位与阈电位之间的距离减小,故心肌的兴奋性增高。位之间的距离减小,故心肌的兴奋性增高。重度低钙重度低钙:在静息膜电位水平快钠通道已有部分失:在静息膜电位水平快钠通道已有部分失活,因而心肌的兴奋性反而降低。活,因而心肌的兴奋性反而降低。2.pH值改变对心肌兴奋性的影

26、响值改变对心肌兴奋性的影响 细胞外液细胞外液pH值降低:值降低:可抑制快钠通道,使阈电位水平可抑制快钠通道,使阈电位水平上移,细胞的兴奋性降低。上移,细胞的兴奋性降低。细胞内液细胞内液pH值降低:值降低:可抑制可抑制IK1通道,使膜电位去极化,通道,使膜电位去极化,从而使快钠通道发生一定程度的失活;另一方面又可从而使快钠通道发生一定程度的失活;另一方面又可降低快钠通道的开放概率,故快反应细胞的兴奋性降降低快钠通道的开放概率,故快反应细胞的兴奋性降低。低。二、心肌的传导性(二、心肌的传导性(conductivity)(一)心肌是(一)心肌是功能合胞体功能合胞体(functional syncyt

27、ium),动作,动作 电位可通过缝隙连接在细胞之间进行传递。电位可通过缝隙连接在细胞之间进行传递。房室交界区(房室交界区(atrioventricular junction)是心房肌和)是心房肌和心室肌之间唯一的兴奋传导通道。心室肌之间唯一的兴奋传导通道。如出现房室交界区的完全性传导阻滞(如出现房室交界区的完全性传导阻滞(complete AV block),则会导致房室分离(,则会导致房室分离(atrio-ventricular dissociation)。)。(二)心脏的特殊传导组织(二)心脏的特殊传导组织是特化了的心肌,传导性增强,收缩性丧失。有以下结构:是特化了的心肌,传导性增强,收缩

28、性丧失。有以下结构:窦房结:主导起搏点(窦房结:主导起搏点(dominant pacemaker)房室交界:包括房结区、结区、结希区、希氏束房室交界:包括房结区、结区、结希区、希氏束 房间束(巴氏束,优势传导通路)房间束(巴氏束,优势传导通路)结间束:结间束:前结间束:分出前结间束:分出巴氏束巴氏束(Bachmann bundle)中结间束;中结间束;后结间束。后结间束。房室束(希氏束,房室束(希氏束,His bundle)左右束支左右束支 普肯耶氏纤维:与普通心肌细胞形成缝隙连接普肯耶氏纤维:与普通心肌细胞形成缝隙连接 图图9-2.心脏特殊传导组织、各部位心肌细胞动作电位图形特点及其与心电图

29、波形的关系心脏特殊传导组织、各部位心肌细胞动作电位图形特点及其与心电图波形的关系图中数字表示窦房结的兴奋冲动传至心脏不同部位时所需要的时间(秒)(三)房室交界区(三)房室交界区1.房室交界区的结构特点房室交界区的结构特点房室交界区包括四个区域:房室交界区包括四个区域:房房-结区结区(atrio-nodal zone,AN区)区)房室结区房室结区(即固有房室结,结区,(即固有房室结,结区,nodal zone,N区)区)结结-希区希区(nodal-His zone,NH区区)希氏束希氏束(His bundle)图9-17 房室交界区结构示意图atrial-nodal zonenodal zone

30、nodal-His zoneHis bundleinternodal pathwaysAV junctionThe structure of AV junction2.房室交界区的兴奋传导特点房室交界区的兴奋传导特点 心脏不同部位兴奋的传导速率(心脏不同部位兴奋的传导速率(conduction velocity,CV)大致为:)大致为:窦房结:窦房结:0.05 m/s 心房肌:心房肌:0.4 m/s 心房内优势传导通路:心房内优势传导通路:1.0 1.2 m/s 房室交界区:房室交界区:0.02 m/s 兴奋通过房室交界区耗时约兴奋通过房室交界区耗时约0.1 s,这意味着心房和心室的兴奋存,这

31、意味着心房和心室的兴奋存 在在0.1 s的时间差,即的时间差,即房室延搁房室延搁(atrioventricular delay),它保),它保 证了心室的收缩发生在心房收缩完毕之后,故有利于心室的充盈和证了心室的收缩发生在心房收缩完毕之后,故有利于心室的充盈和 射血。射血。房室传导阻滞房室传导阻滞(atrio-ventricular conduction block,A-V block)房室束、束支和普肯耶氏纤维:房室束、束支和普肯耶氏纤维:2 4 m/s 心室肌:心室肌:0.4 0.5 m/s预激综合征预激综合征(pre-excitation syndrome,Wolf-Parkinson-

32、White syndrome,WPW syndrome)的形态学基础:的形态学基础:少数人的附加传导束:少数人的附加传导束:j Kent束束(肯氏束):是在纤维环浅面出现的连接心房肌(肯氏束):是在纤维环浅面出现的连接心房肌和心室肌的肌束,一般为一条,有时为两条或多条。和心室肌的肌束,一般为一条,有时为两条或多条。k James旁路束旁路束(杰氏束):后结间束的大部分纤维和前、(杰氏束):后结间束的大部分纤维和前、中结间束的小部分纤维,可绕过房室结的中上部,直接中结间束的小部分纤维,可绕过房室结的中上部,直接进入房室结下部或房室束的近侧部。进入房室结下部或房室束的近侧部。ll Mahaim纤维

33、纤维(马氏束):由房室结、房室束或束支主干(马氏束):由房室结、房室束或束支主干发出的纤维直接至室间隔心肌。发出的纤维直接至室间隔心肌。(四)心肌传导性的影响因素(四)心肌传导性的影响因素 结构因素结构因素(1)心肌细胞的细胞内电阻:取决于细胞直径)心肌细胞的细胞内电阻:取决于细胞直径(2)闰盘的密度)闰盘的密度2.生理因素生理因素 (1)心肌细胞的电生理学特性对心肌传导性的影响)心肌细胞的电生理学特性对心肌传导性的影响1)心肌动作电位)心肌动作电位0期最大去极化速度和幅度期最大去极化速度和幅度 膜反应曲线膜反应曲线(membrane responsiveness curve)2)邻近未兴奋部

34、位心肌的兴奋性)邻近未兴奋部位心肌的兴奋性 3)静息期的长短)静息期的长短 心肌电周期(心肌电周期(cardiac electric cycle)动作电位时程和心肌激动传导速率的回馈特性动作电位时程和心肌激动传导速率的回馈特性 图图9-18 膜反应曲线膜反应曲线(2)电解质浓度及自主神经对心肌传导性的影响和调节)电解质浓度及自主神经对心肌传导性的影响和调节1)电解质浓度电解质浓度对心肌传导性的影响:对心肌传导性的影响:细胞外高钾:细胞外高钾:可使静息电位向去极化方向变动,可使快可使静息电位向去极化方向变动,可使快钠通道部分或全部失活,导致传导速度减慢或传导阻滞。钠通道部分或全部失活,导致传导速

35、度减慢或传导阻滞。细胞外低钾:细胞外低钾:由于静息时膜对由于静息时膜对K+的通透性降低,的通透性降低,K+外流外流减少,也使静息电位向去极化方向变动,因此也使传导减少,也使静息电位向去极化方向变动,因此也使传导性降低。性降低。2)自主神经自主神经对心肌传导性的调节:对心肌传导性的调节:交感神经:交感神经:其递质其递质NE具有加快房室交界区传导的作用,具有加快房室交界区传导的作用,称为称为正性变传导作用正性变传导作用(positive dromotropic action)。)。NE激动激动b b受体,使受体,使ICa-L通道开放,通道开放,Ca2+内流增加,故房内流增加,故房室交界区的慢反应细

36、胞动作电位室交界区的慢反应细胞动作电位0期去极化速度和幅度期去极化速度和幅度增加,因而传导加快。增加,因而传导加快。迷走神经:迷走神经:其递质其递质乙酰胆碱乙酰胆碱具有减慢房室交界区传导的具有减慢房室交界区传导的作用,称为作用,称为负性变传导作用负性变传导作用(negative dromotropic action)。迷走神经递质乙酰胆碱可使)。迷走神经递质乙酰胆碱可使ICa-L通道开放概通道开放概率降低,率降低,ICa-L幅值减小,故房室交界区的慢反应细胞动幅值减小,故房室交界区的慢反应细胞动作电位作电位0期去极化速度和幅度降低,因而传导减慢。迷期去极化速度和幅度降低,因而传导减慢。迷走神经

37、强烈兴奋时,可出现房室传导阻滞。走神经强烈兴奋时,可出现房室传导阻滞。三、心肌细胞的自律性高低决定心率的快慢三、心肌细胞的自律性高低决定心率的快慢p 定义:在生理情况下,心脏特殊传导系统的心肌细胞在没定义:在生理情况下,心脏特殊传导系统的心肌细胞在没有外来刺激的条件下能自动发生节律性兴奋,这种特性或有外来刺激的条件下能自动发生节律性兴奋,这种特性或能力称为能力称为自动节律性自动节律性(autorhythmicity),简称),简称自律性自律性。p 一些概念:一些概念:心律心律(heart rhythm)和)和心率心率(heart rate,HR)主导起搏点主导起搏点(dominant pace

38、maker)潜在起搏点潜在起搏点(latent pacemaker)被动性异位心律被动性异位心律,也称,也称逸搏节律逸搏节律(escape rhythm)异位起搏点异位起搏点(ectopic pacemaker)(一)正常情况下窦房结是心脏的主导起搏点(一)正常情况下窦房结是心脏的主导起搏点p 不同部位自律组织的发放频率:不同部位自律组织的发放频率:窦房结窦房结P细胞的自然发放频率最高细胞的自然发放频率最高可达可达100次次/min,因而成为了心脏的主导起搏点。其余自律细胞的发放频,因而成为了心脏的主导起搏点。其余自律细胞的发放频率(次率(次/min)为:房室交界区)为:房室交界区50,房室束

39、,房室束40,末梢普肯耶细胞,末梢普肯耶细胞25。p 窦房结成为心脏主导起搏点的原理:窦房结成为心脏主导起搏点的原理:(1)抢先占领抢先占领(capture):指窦房结):指窦房结P细胞的自律性高于其他各潜在起搏细胞的自律性高于其他各潜在起搏点的自律性,当潜在起搏点的点的自律性,当潜在起搏点的4期自动去极化尚未达到其本身的阈电位时,期自动去极化尚未达到其本身的阈电位时,已经被窦房结传来的窦性节律性冲动所激动而产生动作电位,因此其本身已经被窦房结传来的窦性节律性冲动所激动而产生动作电位,因此其本身的自律性不能表现出来。的自律性不能表现出来。(2)超速驱动压抑超速驱动压抑(overdrive su

40、ppression):自律细胞在受到高于其自:自律细胞在受到高于其自身固有频率的节律性刺激时发生的节律性兴奋,称为超速驱动。超速驱动身固有频率的节律性刺激时发生的节律性兴奋,称为超速驱动。超速驱动停止时,该自律细胞自身固有的自律活动不能立即恢复,需要经过一段时停止时,该自律细胞自身固有的自律活动不能立即恢复,需要经过一段时间后才能表现出来。这种在超速驱动后自身固有的自律活动暂时受到压抑间后才能表现出来。这种在超速驱动后自身固有的自律活动暂时受到压抑的现象,称为超速驱动压抑。的现象,称为超速驱动压抑。(二)自律性的高低取决于舒张期自动去极化的速率以及最大(二)自律性的高低取决于舒张期自动去极化的

41、速率以及最大 舒张电位和阈电位之间的距离舒张电位和阈电位之间的距离(三)心肌细胞的自律性的调节因素(三)心肌细胞的自律性的调节因素 1.K+浓度对心肌自律性的影响浓度对心肌自律性的影响 细胞细胞外外K+离子浓度变化对窦房结离子浓度变化对窦房结P细胞的自律性没有明显影响,但对细胞的自律性没有明显影响,但对普肯耶细胞的自律性有明显影响。普肯耶细胞的自律性有明显影响。细胞外高钾:细胞外高钾:可使普肯耶细胞的最大舒张电位的负值减小(即向去可使普肯耶细胞的最大舒张电位的负值减小(即向去极化方向变化),从而使极化方向变化),从而使If的激活程度降低,同时使的激活程度降低,同时使IK1通道对通道对K+离离子

42、的通透性增高,子的通透性增高,K+离子外流增加,这部分电流可部分地抵消离子外流增加,这部分电流可部分地抵消If的内的内向电流,使浦肯野细胞的自律性降低。向电流,使浦肯野细胞的自律性降低。细胞外低钾:细胞外低钾:可使普肯耶细胞的自律性增高。可使普肯耶细胞的自律性增高。2.自主神经递质对心肌自律性的影响自主神经递质对心肌自律性的影响 自主神经通过释放其递质可改变心肌细胞的自律性从而调自主神经通过释放其递质可改变心肌细胞的自律性从而调节心率,称为节心率,称为变时作用变时作用(chronotropic action)。)。交感神经交感神经递质递质NE作用于心肌细胞膜上的作用于心肌细胞膜上的b b受体,

43、可增高心受体,可增高心肌细胞的自律性,使心率加快,称为肌细胞的自律性,使心率加快,称为正性变时作用正性变时作用(positive chronotropic action)。)。副交感神经副交感神经递质乙酰胆碱可降低心肌细胞的自律性,使心递质乙酰胆碱可降低心肌细胞的自律性,使心率减慢,称为率减慢,称为负性变时作用负性变时作用(negative chronotropic action)。)。p 后去极化和触发活动后去极化和触发活动 后去极化后去极化(after-depolarization),是指膜电位在动作电位),是指膜电位在动作电位0期去极化之后的异常去极化震荡现象,可分为两类:期去极化之后的

44、异常去极化震荡现象,可分为两类:早期后去极化早期后去极化(early after-depolarization,EAD),指在),指在动作电位复极化阶段(特别是在动作电位复极化阶段(特别是在2期或期或/和和3期)发生的再次期)发生的再次去极化的现象。去极化的现象。延迟后去极化延迟后去极化(delayed after-depolarization,DAD),指),指在动作电位在动作电位4期发生的自发异常去极化现象,多由细胞内钙期发生的自发异常去极化现象,多由细胞内钙超载引起。超载引起。触发活动触发活动(triggered activity):延迟后去极化如果达到阈电):延迟后去极化如果达到阈电位

45、水平,可提早引发一个或数个动作电位,称为触发活动,可位水平,可提早引发一个或数个动作电位,称为触发活动,可表现为早搏或心动过速,称为触发性心律失常(表现为早搏或心动过速,称为触发性心律失常(triggered arrhythmia)。)。图图9-20 早期后去极(平台震荡)示意图早期后去极(平台震荡)示意图图图9-21 延迟后去极化和触发活动延迟后去极化和触发活动A:延迟后去极,无出发活动;B:由延迟后去极引起的三个触发活动(早搏)第三节第三节 体表心电图体表心电图p 把两个记录电极分别放在体表的一定部位,在心电图仪把两个记录电极分别放在体表的一定部位,在心电图仪可记录到心肌电周期中的电场变化

46、在体表所引起的电位可记录到心肌电周期中的电场变化在体表所引起的电位变化。用这样的方法记录到的图形,称为变化。用这样的方法记录到的图形,称为体表心电图体表心电图(surface electrocardiogram,surface ECG),简称),简称心电图心电图(electrocardiogram,ECG)。)。图图9-22 正常人体表心电图的模式图正常人体表心电图的模式图ECG各波所反应的意义:各波所反应的意义:P wave:Atrial(left and right)activation Amplitude:0.25mV;Duration:0.08-0.11sec P-R interval

47、:Atrial activation time+A-V conduction time Duration:0.12-0.20sec QRS complex:ventricular depolarization S-T segment:all the ventricular cells are activated.T wave:ventricular repolarization Ta wave(atrial T wave):atrial repolarization merged in QRS Q-T interval:ventricular activation time(depol+rep

48、ol)U wave:mechanism and significance unkown二、心电图导联二、心电图导联(一)(一)标准导联标准导联(双极肢体导联双极肢体导联,bipolar limb leads):反映心电活动在两个肢体之间呈现出的电位差。反映心电活动在两个肢体之间呈现出的电位差。导联:导联:左上肢接心电图机的正极,右上肢接心电图左上肢接心电图机的正极,右上肢接心电图机的负极。机的负极。导联:导联:左下肢接心电图机的正极,右上肢接心电图左下肢接心电图机的正极,右上肢接心电图机的负极。机的负极。导联:导联:左下肢接心电图机的正极,左上肢接心电图左下肢接心电图机的正极,左上肢接心电图机

49、的负极。机的负极。图图9-23 标准导联示意图标准导联示意图(二)(二)加压单极肢体导联加压单极肢体导联(augmented unipolar limb leads)反映心电活动在某一个肢体呈现的电位变化反映心电活动在某一个肢体呈现的电位变化 中心电端中心电端(central reference point):将两上肢及左下肢各):将两上肢及左下肢各通过一个通过一个5000W W电阻连接到一点,这一点称为其电位为零。电阻连接到一点,这一点称为其电位为零。中心电端与心电图机的负极相连。中心电端与心电图机的负极相连。加压单极肢体导联:加压单极肢体导联:在描记某一肢体导联的心电图时,将该在描记某一肢

50、体导联的心电图时,将该肢体与中心电端的联线断开。肢体与中心电端的联线断开。右上肢、左上肢及左下肢分别右上肢、左上肢及左下肢分别连接心电图机的正极。这样就分别构成了:连接心电图机的正极。这样就分别构成了:加压单极右上肢导联加压单极右上肢导联(aVR)加压单极左上肢导联加压单极左上肢导联(aVL)加压单极左下肢导联加压单极左下肢导联(aVF)(2)Unipolar limb leads The combination of the electrodes of left arm,right arm and left leg show roughly a zero potential,this poi

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(工作心肌细胞的动作电位课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|