1、oop1.连结连结OP2.以以OP为直径作为直径作 O,与与 O交于交于A、B两点。两点。AB即直线即直线PA、PB为为 O的切线的切线 如图,已知如图,已知 O外一点外一点P,你能用尺规过点,你能用尺规过点P作作 O的切线吗?的切线吗?通过作图你能发现什么呢?通过作图你能发现什么呢?1.过圆外一点作圆的切线可以作两条过圆外一点作圆的切线可以作两条2.点点A和点和点B关于直线关于直线OP对称对称经过圆外一点作圆的切线,这点和切点之间的线经过圆外一点作圆的切线,这点和切点之间的线段的长,段的长,叫做这点到圆的切线长。叫做这点到圆的切线长。切线长是切线长是一条线段一条线段实实 验验观观 察察说说
2、明明opAB如图,如图,PA、PB是是 O的切线,的切线,A、B为切点。如果连结为切点。如果连结OA、OB、OP,图中的,图中的PA与与PB,APO与与BPO有什么关系?有什么关系?PA、PB是是 O的切线,的切线,A、B为切点为切点OAPA,OBPB又又OAOB,OPOPRtAOP RtBOPPAPB,APOBPO切线长定理:切线长定理:从圆外一点可以引圆的两条切线,切线长相等,从圆外一点可以引圆的两条切线,切线长相等,这一点和圆心的连线平分两条切线的夹角。这一点和圆心的连线平分两条切线的夹角。opAB PA、PB是是 O的切线,的切线,A、B为切点为切点PAPB,APOBPO如图,若连接如
3、图,若连接AB,则,则OP与与AB有什么关系?有什么关系?PA、PB是是 O的切线,的切线,A、B为切点为切点PAPB,APOBPOOPAB,且,且OP平分平分ABCD从圆外一点引圆的两条切线,圆心和这一从圆外一点引圆的两条切线,圆心和这一点的连线垂直平分切点所成的弦;平分切点的连线垂直平分切点所成的弦;平分切点所成的弧。点所成的弧。AD与与BD相等吗?相等吗?例1已知已知,如图,如图,PA、PB是是 O的两条切线,的两条切线,A、B为切点为切点.直线直线 OP 交交 O 于点于点 D、E,交,交 AB 于于 C.(1)写出图中所有的垂直关系;)写出图中所有的垂直关系;(2)写出图中所有的全等
4、三角形)写出图中所有的全等三角形.(3)如果)如果 PA=4 cm,PD=2 cm,求半径求半径 OA 的长的长.AOCDPBE解:解:(1)OAPA,OBPB,OPAB(2)OAP OBP,OCA OCB ACP BCP.(3)设设 OA=x cm,则则 PO=PD+x=2+x(cm)在在 RtOAP 中,由勾股定理,得中,由勾股定理,得 PA 2+OA 2=OP 2 即即 4 2+x 2=(x+2)2 解得解得 x =3 cm 所以,半径所以,半径 OA 的长为的长为 3 cm.POABc 如图,如图,P为为 O 外一点,外一点,PA、PB分别切分别切 O于于A、B两点,两点,OP交交 O
5、于于C,若,若PA6,PC2 ,求,求 O的的半径半径OA及两切线及两切线PA、PB的夹角。的夹角。解:解:连接连接OA、AC,则,则OAAP在在RtAOP中,设中,设OAx则则OP x23OA2PA2OP2即即 x262(x2 )23解得解得x2 ,即,即OAOC233OP4 3在在RtAOP中,中,OP2OAAPO30PA、PB是是 O的切线的切线APB2APO60 O的半径为的半径为2 ,两,两切线的夹角为切线的夹角为603练习练习解得解得x2 ,即,即OAOC2333如图所示是一张三角形的铁皮,如何在它上如图所示是一张三角形的铁皮,如何在它上面剪下一块圆形的用料,并且使圆的面积尽面剪下一块圆形的用料,并且使圆的面积尽可能大呢?可能大呢?ABCABCMDNI1.一个三角形有且只有一个内切圆;一个三角形有且只有一个内切圆;2.一个圆有无数个外切三角形;一个圆有无数个外切三角形;3.三角形的内心就是三角形三条内角平三角形的内心就是三角形三条内角平 分线的交点;分线的交点;4.三角形的内心到三角形三边的距离相等。三角形的内心到三角形三边的距离相等。EF HG