1、问题问题 :你知道赵州桥吗:你知道赵州桥吗?它是它是13001300多年前我国隋代建造的石多年前我国隋代建造的石拱桥拱桥,是我国古代人民勤劳与智慧的结晶它的主桥是圆弧是我国古代人民勤劳与智慧的结晶它的主桥是圆弧形形,它的它的跨度跨度(弧所对的弦的长弧所对的弦的长)为为37.437.4m m,拱高拱高(弧的中点到弧的中点到弦的距离弦的距离)为为7.27.2m m,你能求出赵洲桥主桥拱的半径吗?你能求出赵洲桥主桥拱的半径吗?赵州桥主桥拱的半径是多少赵州桥主桥拱的半径是多少?实践探究实践探究用纸剪一个圆用纸剪一个圆,沿着圆的任意一条直径沿着圆的任意一条直径所在的直线对折所在的直线对折,重复做几次重复
2、做几次,你发现了你发现了什么什么?由此你能得到什么结论由此你能得到什么结论?可以发现:可以发现:圆是轴对称图形,任何一条直径所在直线都是圆是轴对称图形,任何一条直径所在直线都是它的对称轴它的对称轴如图,如图,AB是是 O的一条弦,作直径的一条弦,作直径CD,使,使CDAB,垂足为,垂足为E(1)图是轴对称图形吗?如果是,它的对称轴是什么?)图是轴对称图形吗?如果是,它的对称轴是什么?(2)你能发现图中有那些相等的线段和弧?为什么?)你能发现图中有那些相等的线段和弧?为什么?OABCDE活活 动动 二二(1)是轴对称图形直径)是轴对称图形直径CD所在的所在的直线是它的对称轴直线是它的对称轴(2)
3、线段:线段:AE=BE弧弧:,ACBC ADBD把圆沿着直径把圆沿着直径CD折叠时,折叠时,CD两侧的两个半两侧的两个半圆重合,点圆重合,点A与点与点B重合,重合,AE与与BE重重合,合,分别与分别与 、重重合合ACADBCBDOABCDE垂径定理:垂径定理:垂直于弦的直径平分垂直于弦的直径平分弦,并且平分弦所对的两条弧弦,并且平分弦所对的两条弧平分弦(不是直径)的直径垂直于弦,并且平分弦平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧所对的两条弧解得:解得:R279(m)BODACR解决求赵州桥拱半径的问题解决求赵州桥拱半径的问题在在RtOAD中,由勾股定理,得中,由勾股定理,得即即
4、 R2=18.72+(R7.2)2赵州桥的主桥拱半径约为赵州桥的主桥拱半径约为27.9m.OA2=AD2+OD2,7.184.372121ABADAB=37.4,CD=7.2,OD=OCCD=R7.2在图中在图中如图,用如图,用 表示主桥拱,设表示主桥拱,设 所在圆的圆心为所在圆的圆心为O O,半径为半径为R R经过圆心经过圆心O O 作弦作弦AB AB 的垂线的垂线OCOC,D D为垂足,为垂足,OCOC与与AB AB 相交于点相交于点D D,根据前面的结论,根据前面的结论,D D 是是AB AB 的中的中点,点,C C是是 的中点,的中点,CD CD 就是拱高就是拱高ABABAB1如图,在
5、如图,在 O中,弦中,弦AB的长为的长为8cm,圆心,圆心O到到AB的距离为的距离为3cm,求,求 O的半径的半径OABE练习练习解:解:OEABRtAOE在中222AOOEAE2222=3+4=5cmAOOEAE答:答:O的半径为的半径为5cm.118422AEAB 2如图,在如图,在 O中,中,AB、AC为互相垂直且相等的为互相垂直且相等的两条弦,两条弦,ODAB于于D,OEAC于于E,求证四边形求证四边形ADOE是正方形是正方形DOABCE证明:证明:OEAC ODAB ABAC90 90 90OEAEADODA四边形四边形ADOE为矩形,为矩形,又又AC=AB11 22AEACADAB
6、,AE=AD 四边形四边形ADOE为正方形为正方形.判断下列说法的正误判断下列说法的正误 平分弧的直径必平分弧所对的弦平分弧的直径必平分弧所对的弦 平分弦的直线必垂直弦平分弦的直线必垂直弦 垂直于弦的直径平分这条弦垂直于弦的直径平分这条弦 平分弦的直径垂直于这条弦平分弦的直径垂直于这条弦 弦的垂直平分线是圆的直径弦的垂直平分线是圆的直径 平分弦所对的一条弧的直径必垂直这条弦平分弦所对的一条弧的直径必垂直这条弦 在圆中,如果一条直线经过圆心且平分弦,在圆中,如果一条直线经过圆心且平分弦,必平分此弦所对的弧必平分此弦所对的弧 分别过弦的三等分点作弦的垂线,将弦所对分别过弦的三等分点作弦的垂线,将弦
7、所对的两条弧分别三等分的两条弧分别三等分 OAB60在直径是在直径是20cm的的中,中,的度数是的度数是,那么弦,那么弦AB的弦心距是的弦心距是.D A B O5 3cm弓形的弦长为弓形的弦长为6cm,弓形的高为,弓形的高为2cm,则这弓形所在的圆的半径为则这弓形所在的圆的半径为.D C A B O134cmOO3cm已知已知P为为内一点,且内一点,且OP2cm,如果,如果的半径是的半径是,那么过,那么过P点的最短点的最短的弦等于的弦等于.E D C B A P O2 5cm某地有一座圆弧形拱桥圆心为,桥下水面宽度为某地有一座圆弧形拱桥圆心为,桥下水面宽度为.2m.2m,过过O O作作OCOC
8、ABAB于于D D,交圆弧于,交圆弧于C C,CD=2.4mCD=2.4m,现有一艘宽,现有一艘宽3m3m,船舱,船舱顶部为方形并高出水面(顶部为方形并高出水面(ABAB)2m2m的货船要经过拱桥,此货船能的货船要经过拱桥,此货船能否顺利通过这座拱桥?否顺利通过这座拱桥?CNMAEHFBDO.推论推论2.2.圆的两条平行弦所夹的弧相等。圆的两条平行弦所夹的弧相等。MOABNCD例例2 已知:如图,在以已知:如图,在以O为圆心的两个同心圆中,为圆心的两个同心圆中,大圆的弦大圆的弦AB交小圆于交小圆于C,D两点。两点。试说明:试说明:ACBD。证明:过证明:过O作作OEAB,垂足为,垂足为E,则,
9、则 AEBE,CEDE。AECEBEDE。所以,所以,ACBDE.ACDBO 已知已知 O的直径是的直径是50 cm,O的两条的两条平行弦平行弦AB=40 cm,CD=48cm,求弦求弦AB与与CD之间的距离。之间的距离。.AEBOCD20152525247.AEBOCDFEF有两解:有两解:15+7=22cm 15-7=8cm如图,如图,O的半径为的半径为5,弦,弦AB的长为的长为8,M是弦是弦AB上的动点,则线段上的动点,则线段OM的长的最小的长的最小值为值为_._.最大值为最大值为_._.35 如图,矩形如图,矩形ABCDABCD与圆与圆O O交于点交于点A A、B B、E E、F F,DE=1cmDE=1cm,EF=3cmEF=3cm,则,则AB=_cmAB=_cmFEDCBAO5如图,在圆如图,在圆O中,已知中,已知AC=BD,试说明:试说明:(1)OC=OD (2)AE=BFFECOABD