1、第一章 特殊平行四边形第1节 菱形的性质与判定(三)一、知识回顾1.如图所示:在菱形ABCD中,AB=6,(1)三条边AD、DC、BC的长度分别是多少?(2)对角线AC与BD有什么位置关系?(3)若ADC=120,求AC的长。回忆:菱形有哪些性质?答案:(1)6(2)垂直平分(3)6 3一、知识回顾2.如图所示:在ABCD中添加一个条件使其成为菱形:添加方式1:.添加方式2:.回忆:菱形有哪些判定?一组邻边相等ACBD二、知识应用1.典型例题:如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长为10cm.求:(1)对角线AC的长度;(2)菱形ABCD的面积.思路启迪:菱形的对角线有什
2、么特点?二、知识应用1.典型例题(规范书写过程)思考:菱形面积是如何求出的?二、知识应用2.变式训练如图所示,四边形ABCD是菱形,其中对角线BD=12cm,AC=16cm.求:(1)菱形的边长;(2)求菱形一条边上的高.答案:(1)10cm,(2)9.6cm思考:求菱形面积的方法有几种?知者加速1:已知菱形的周长为40,一条对角线长为16,则这个菱形的面积是 .二、知识应用3.方法启迪(1)同学们在我们刚才完成的例题及变式训练中你有什么方法感悟或者经验?(2)求菱形面积的方法有几种?重大发现:菱形的面积等于其对角线乘积的一半.知者加速1答案:96.三、拓展提高1.如图,两张等宽的纸条交叉重叠
3、在一起,重叠部分ABCD是菱形吗?为什么?三、拓展提高2.如图你能用一张锐角三角形纸片ABC折出一个菱形,使A成为菱形一个内角吗?四、效果检测1.如图所示,菱形ABCD的周长为40cm,它的一条对角线BD长10cm,则ABC=,AC=cm.2.如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4cm,BD=8cm,则这个菱形的面积是 cm 四、效果检测3.已知,如图,在四边形ABCD中,AD=BC,点E、F、G、H分别是AB、CD、AC、BD的中点,四边形EGFH是()A.矩形 B.菱形 C.等腰梯形 D.正方形 4.已知:如图,在菱形ABCD中,E、F分别是AB和BC上的点,且B
4、E=BF,求证:(1)ADE CDF;(2)DEF=DFE.四、效果检测效果检测答案:1.120,2.16 3.B4.提示(1)SAS证明全等,(2)对应边相等知者加速2:如图,在RtABC=90,BAC=60,BC的垂直平分线分别交BC和AB于点D、E,点F在DE延长线上,且AF=CE,求证:四边形ACEF是菱形.10 3五、课堂小结1.通过本节课的学习你有哪些收获,你还存在什么疑问?2.请从以下三个方面进行总结:知识收获、方法收获、关注问题。3.总结完成后请小组内进行交流。六、因人作业1.必做题:课本p27知识技能第3题,第4题,第8题;2.选做题:如图,在四边形ABCD中,ADBC E为BC的中点,BC2AD,EAED2,AC与ED相交于点F当AB与AC具有什么位置关系时,四边形AECD是菱形?请说明理由,并求出此时菱形AECD的面积谢谢大家!