1、门电路及组合逻辑电路门电路及组合逻辑电路 模拟信号:在时间上和数值上连续的信号。数字信号:在时间上和数值上不连续的(即离散的)信号。uu模拟信号波形数字信号波形tt对模拟信号进行传输、处理的电子线路称为模拟电路。对数字信号进行传输、处理的电子线路称为数字电路。又称逻辑电路。:时间上连续:任意时刻有一个相对的值。数值上连续:可以是在一定范围内的任意值。例如:电压、电流、温度、声音等。真实的世界是模拟的。缺点:很难度量;容易受噪声的干扰;难以保存。优点:用精确的值表示事物。:处理和传输模拟信号的电路。三极管工作在线性放大区。时间上离散:只在某些时刻有定义。数值上离散:变量只能是有限集合的一个值,常
2、用0、1二进制数表示。例如:开关通断、电压高低、电流有无。处理和传输数字信号的电路。数字化时代:音乐:CD、MP3电影:MPEG、RM、DVD数字电视数字照相机数字摄影机手机三极管工作在开关状态,即饱和区或截止区。1、进位制:表示数时,仅用一位数码往往不够用,必须用进、进位制:表示数时,仅用一位数码往往不够用,必须用进位计数的方法组成多位数码。多位数码每一位的构成以及从位计数的方法组成多位数码。多位数码每一位的构成以及从低位到高位的进位规则称为进位计数制,简称进位制或数制。低位到高位的进位规则称为进位计数制,简称进位制或数制。2、基、基 数:进位制的基数,就是在该进位制中可能用到的数数:进位制
3、的基数,就是在该进位制中可能用到的数码个数。码个数。3、位位 权(位的权数):在某一进位制的数中,每一位的大权(位的权数):在某一进位制的数中,每一位的大小都对应着该位上的数码乘上一个固定的数,这个固定的数小都对应着该位上的数码乘上一个固定的数,这个固定的数就是这一位的权数。权数是一个幂。就是这一位的权数。权数是一个幂。4 4、加权系数:数码与权的乘积。、加权系数:数码与权的乘积。数码为:数码为:09;基数是;基数是10。运算规律:逢十进一,即:运算规律:逢十进一,即:9110。十进制数的权展开式:十进制数的权展开式:1、十进制、十进制103、102、101、100称为十进制的权。各数位的权是
4、10的幂。同样的数码在不同的数位上代表的数值不同。任意一个十进制数都可以表示为各个数位上的数码与其对应的权的乘积之和,称权展开式。即:即:(5555)105103 510251015100又如:又如:(3176.54)10 31031102 7101610051014 102数码为:数码为:0、1;基数是;基数是2。运算规律:逢二进一,即:运算规律:逢二进一,即:1110。二进制数的权展开式:二进制数的权展开式:如:如:(1011.01)2 123+022 1211200211 22(11.75)10加法规则:加法规则:0+0=0,0+1=1,1+0=1,1+1=10乘法规则:乘法规则:00=
5、0,01=0,10=0,11=1运算运算规则规则各数位的权是的幂各数位的权是的幂二进制数只有二进制数只有0和和1两个数码,它的每一位都可以用电子元两个数码,它的每一位都可以用电子元件来实现,且运算规则简单,相应的运算电路也容易实现。件来实现,且运算规则简单,相应的运算电路也容易实现。数码为:数码为:07;基数是;基数是8。运算规律:逢八进一,即:运算规律:逢八进一,即:7110。八进制数的权展开式:八进制数的权展开式:如:如:(437.25)10482 3817802815 82 (287.328125)10数码为:数码为:09、AF;基数是;基数是16。运算规律:逢十六进一,即:运算规律:逢
6、十六进一,即:F110。十六进制数的权展开式:十六进制数的权展开式:如:如:(3BE.C4)2316211161 1416012161 4162(958.765625)10各数位的权是各数位的权是8的幂的幂各数位的权是各数位的权是16的幂的幂(3176.54)10 3103 1102 7101610051014 102(1011.11)2 123 022 121 1201211 22 8+0+2+1+0.5+0.25 (11.75)10(437.25)8 482 3817802815 82 256+24+7+1+0.25+0.78125 (287.328125)10(3BE.C4)16 316
7、2 11161 1416012 161 4 162 768+176+14+1+0.75+0.015625 (958.765625)10一般地,一般地,N进制需要用到进制需要用到N个数码,基数是个数码,基数是N;运算;运算规律为逢规律为逢N进一。进一。如果一个如果一个N进制数进制数M包含位整数和位小数,即包含位整数和位小数,即 (an-1 an-2 a1 a0 a1 a2 am)2则该数的权展开式为:则该数的权展开式为:(M)2 an-1Nn-1 an-2 Nn-2 a1N1 a0 N0a1 N-1a2 N-2 amN-m 由权展开式很容易将一个由权展开式很容易将一个N进制数转换为十进制数。进制
8、数转换为十进制数。几几 种种 进进 制制 数数 之之 间间 的的 对对 应应 关关 系系十 进 制 数二 进 制 数八 进 制 数十 六 进 制 数0123456789101112131415000000000100010000110010000101001100011101000010010101001011011000110101110011110123456710111213141516170123456789ABCDEF不同数制间的转换不同数制间的转换 将N进制数(B、O、H)按权展开,求出各加权系数的和,即可以转换为十进制数。二、二、十进制数转换为二进制、八进制和十六进制十进制数转换
9、为二进制、八进制和十六进制一、各种数制转换成十进制一、各种数制转换成十进制采用的方法采用的方法 基数连除、连乘法基数连除、连乘法原理原理:将整数部分和小数部分分别进行转换将整数部分和小数部分分别进行转换。整数部分采用除整数部分采用除2取余法取余法;小数部分采用乘小数部分采用乘2取整法取整法;转换后再合并。转换后再合并。2 44 余数 低位 2 22 0 2 11 0 2 5 1 2 2 1 2 1 0 0 1 高位 0.375 2 整数 高位 0.750 0 0.750 2 1.500 1 0.500 2 1.000 1 低位 整数部分采用除整数部分采用除2取余法:先取余法:先得到的余数为低位
10、,后得到得到的余数为低位,后得到的余数为高位。的余数为高位。小数部分采用乘小数部分采用乘2取整法:先取整法:先得到的整数为高位,后得到得到的整数为高位,后得到的整数为低位。的整数为低位。所以:(44.375)10(101100.011)2采用除采用除2取余法、乘取余法、乘2取整法,可将十进制数转换为任意的取整法,可将十进制数转换为任意的N进制数。进制数。三、二进制数与八进制数的相互转换三、二进制数与八进制数的相互转换(1)二进制数转换为八进制数:)二进制数转换为八进制数:将二进制数由小数点开始,将二进制数由小数点开始,整数部分向左,小数部分向右,每整数部分向左,小数部分向右,每3位分成一组,不
11、够位分成一组,不够3位补位补零,则每组二进制数便是一位八进制数。零,则每组二进制数便是一位八进制数。(三位聚一位三位聚一位)(2)八进制数转换为二进制数:将每位八进制数用)八进制数转换为二进制数:将每位八进制数用3位二进位二进制数表示制数表示。(一位变三位一位变三位)(374.26)8=011 111 100.010 1101 1 0 1 0 1 0.0 10 0(152.2)80二进制数与十六进制数的相互转换二进制数与十六进制数的相互转换 二进制数转换为十六进制数,按照每二进制数转换为十六进制数,按照每4位二进制数对应于位二进制数对应于一位十六进制数进行转换。一位十六进制数进行转换。(四位聚
12、一位四位聚一位)01 1 1 0 1 0 1 0 0.0 1 10 0 0(1E8.6)16=1010 1111 0100.0111 0110(AF4.76)16 十六进制数转换为二进制数,按照每一位十六进制数对应于十六进制数转换为二进制数,按照每一位十六进制数对应于4位二进制数进行转换。位二进制数进行转换。(一位变四位一位变四位)用一定位数的二进制数来表示十进制数码、字母、符号等信息称为编码。用以表示十进制数码、字母、符号等信息的一定位数的二进制数称为代码。数字系统只能识别0和1,怎样才能表示更多的数码、符号、字母呢?用编码可以解决此问题。二-十进制代码:用4位二进制数b3b2b1b0来表示
13、十进制数中的 0 9 十个数码。简称BCD码。5421码的权值依次为5、4、2、1;2421码的权值依次为2、4、2、1;余3码由8421码加0011得到;格雷码是一种循环码,其特点是任何相邻的两个码字,仅有一位代码不同,其它位相同。用四位自然二进制码中的前十个码字来表示十进制数码,因各位的权值依次为8、4、2、1,故称8421 BCD码。常常用用B BC CD D码码十进制数 8421码 余3码 格雷码 2421码5421码0123456789000000010010001101000101011001111000100100110100010101100111100010011010101
14、11100000000010011001001100111010101001100110100000001001000110100101111001101111011110000000100100011010010001001101010111100权842124215421事物往往存在两种对立的状态,在逻辑代数中可以抽象地事物往往存在两种对立的状态,在逻辑代数中可以抽象地表示为表示为 0 和和 1,称为逻辑,称为逻辑0状态和逻辑状态和逻辑1状态。状态。逻辑代数是按一定的逻辑关系进行运算的代数,是分析和逻辑代数是按一定的逻辑关系进行运算的代数,是分析和设计数字电路的数学工具。在逻辑代数,只有设
15、计数字电路的数学工具。在逻辑代数,只有和和两种逻辑两种逻辑值,有值,有三种基本逻辑运算,还有三种基本逻辑运算,还有几种导出逻辑运算。几种导出逻辑运算。逻辑代数中的变量称为逻辑变量,用大写字母表示。逻辑代数中的变量称为逻辑变量,用大写字母表示。逻辑变量的取值只有两种,即逻辑逻辑变量的取值只有两种,即逻辑0和逻辑和逻辑1,0 和和 1 称为逻辑称为逻辑常量,并不表示数量的大小,而是表示两种对立的逻辑状态。常量,并不表示数量的大小,而是表示两种对立的逻辑状态。逻辑是指事物的因果关系,或者说条件和结果的关系,这逻辑是指事物的因果关系,或者说条件和结果的关系,这些因果关系可以用逻辑运算来表示,也就是用逻
16、辑代数来描述。些因果关系可以用逻辑运算来表示,也就是用逻辑代数来描述。1 1、与逻辑(与运算)和与门、与逻辑(与运算)和与门与逻辑的定义:仅当决定事件(Y)发生的所有条件(A,B,C,)均满足时,事件(Y)才能发生。表达式为:开关A,B串联控制灯泡Y电路图L=ABEABYEABYEABYEABYEABY两个开关必须同时接通,两个开关必须同时接通,灯才亮。逻辑表达式为:灯才亮。逻辑表达式为:A、B都断开,灯不亮。都断开,灯不亮。A断开、断开、B接通,灯不亮。接通,灯不亮。A接通、接通、B断开,灯不亮。断开,灯不亮。A、B都接通,灯亮。都接通,灯亮。这种把所有可能的条件组合及其对应这种把所有可能的
17、条件组合及其对应结果一一列出来的表格叫做结果一一列出来的表格叫做真值表真值表。将开关接通记作将开关接通记作1,断开记作,断开记作0;灯亮记作;灯亮记作1,灯灭记作,灯灭记作0。可以作出如下表格来描述与逻辑关系:可以作出如下表格来描述与逻辑关系:A BY0 00 11 01 10001开关 A 开关 B灯 Y断开 断开断开 闭合闭合 断开闭合 闭合灭灭灭亮功能表功能表实现与逻辑的电路称为与门。与门的逻辑符号:YAB&真真值值表表逻辑符号逻辑符号2 2、或逻辑(或运算)和或门、或逻辑(或运算)和或门或逻辑的定义:当决定事件(Y)发生的各种条件(A,B,C,)中,只要有一个或多个条件具备,事件(Y)
18、就发生。表达式为:开关A,B并联控制灯泡Y电路图L=ABEABYEABYEABY两个开关只要有一个接通,两个开关只要有一个接通,灯就会亮。逻辑表达式为:灯就会亮。逻辑表达式为:A、B都断开,灯不亮。都断开,灯不亮。A断开、断开、B接通,灯亮。接通,灯亮。A接通、接通、B断开,灯亮。断开,灯亮。A、B都接通,灯亮。都接通,灯亮。EABYEABYA BY0 00 11 01 10111 实现或逻辑的电实现或逻辑的电路称为或门。或路称为或门。或门的逻辑符号:门的逻辑符号:AB1真值表真值表开关 A 开关 B灯 Y断开 断开断开 闭合闭合 断开闭合 闭合灭亮亮亮功能表功能表逻辑符号逻辑符号3 3、非逻
19、辑(非运算)和非门、非逻辑(非运算)和非门非逻辑指的是逻辑的否定。当决定事件(Y)发生的条件(A)满足时,事件不发生;条件不满足,事件反而发生。表达式为:开关A控制灯泡Y电路图EAYRAY0110实现非逻辑的电路称为非门。非门的逻辑符号:YA1 Y=AEAYRA断开,灯亮。断开,灯亮。EAYRA接通,灯灭。接通,灯灭。真真值值表表功功能能表表逻辑符号逻辑符号开关 A灯 Y断开闭合亮灭1、与非运算:逻辑表达式为:ABY A BY0 00 11 01 11110 真值表YAB与非门的逻辑符号L=A+B&2、或非运算:逻辑表达式为:BAYA BY0 00 11 01 11000 真值表YAB或非门的
20、逻辑符号L=A+B13、异或运算:逻辑表达式为:、异或运算:逻辑表达式为:BABABAYA BY0 00 11 01 10110 真值表YAB异或门的逻辑符号L=A+B=1CDABYY1&ABCD与或非门的逻辑符号ABCD&1Y与或非门的等效电路4、与或非运算:逻辑表达式为:与或非运算:逻辑表达式为:5、同或运算:逻辑表达式为:BABAABYA B Y 0 0 0 1 1 0 1 1 1 0 0 1 真值表 Y A B 同或门的逻辑符号 L=A+B=1 常量之间的关系(常量:常量之间的关系(常量:0和和1)加:加:0+0=00+1=11+1=1 乘:乘:0 0=00 1=01 1=1 非:非:
21、1 0 0 1 变量和常量的关系(变量:变量和常量的关系(变量:A、B、C)加:加:A+0=AA+1=1A+A=A乘乘:A 0=0A 1=AA A=A 非:非:0 AA AA1 AA 吸收律吸收律AB)A(ABA 1BAB)(AA(ABAA A)BA(BBAAB AABABA)A(ABBAA)(ABABA)(结合律结合律 CBACBA CBACBA 分配律分配律 ACABCBA CABABCA 与普通代数相似的定理与普通代数相似的定理交换律交换律ABBA ABBA 德德摩根定摩根定律律(反演律反演律)BABA BABA 例如,已知等式 ,用函数Y=AC代替等式中的A,根据代入规则,等式仍然成立
22、,即有:任何一个含有变量A的等式,如果将所有出现A的位置都用同一个逻辑函数代替,则等式仍然成立。这个规则称为代入规则。BAABCBABACBAC)(:对于任何一个逻辑表达式Y,如果将表达式中的所有“”换成“”,“”换成“”,“0”换成“1”,“1”换成“0”,那么所得到的表达式就是函数Y的反函数Y(或称补函数)。这个规则称为反演规则。例如:EDCBAY)(EDCBAYEDCBAYEDCBAY 对于任何一个逻辑表达式Y,如果将表达式中的所有“”换成“”,“”换成“”,“0”换成“1”,“1”换成“0”,而,则可得到的一个新的函数表达式Y,Y称为函Y的对偶函数。这个规则称为对偶规则。例如:EDCB
23、AY)(EDCBAYEDCBAYEDCBAY对偶规则的意义在于对偶规则的意义在于:如果两个函数相等,则它们的对偶函数也相等。利用对偶规则,可以使要证明及要记忆的公式数目减少一半。例如:在运用反演规则和对偶规则时,必须按照逻辑运算的优先顺序进行:先算括号,接着与运算,然后或运算,最后非运算,否则容易出错。ACABCBA)()(CABABCAABABAABABA)()(1、逻辑函数、逻辑函数逻辑函数:如果对应于输入逻辑变量A、B、C、的每一组确定值,输出逻辑变量Y就有唯一确定的值,则称Y是A、B、C、的逻辑函数。记为),(CBAfY 逻辑表达式:由逻辑变量和与、或、非3种运算符连接起来所构成的式子
24、。在逻辑表达式中,等式右边的字母A、B、C、D等称为输入逻辑变量,等式左边的字母Y称为输出逻辑变量,字母上面没有非运算符的叫做原变量,有非运算符的叫做反变量。:与普通代数不同的是,在逻辑代数中,不管是变量还是函数,其取值都只能是0或1,并且这里的0和1只表示两种不同的状态,没有数量的含义。任意一个逻辑函数,都可用逻辑表达式、真值表、逻辑图、卡诺图、波形图等方法进行描述。(1)逻辑表达式)逻辑表达式 逻辑表达式:是由逻辑变量和与、或、非3种运算符连接起来所构成的式子。函数的标准与或表达式的列写方法:将函数的真值表中那些使函数值为1的最小项相加,便得到函数的标准与或表达式。)7,6,3(mABCC
25、ABBCAY真值表:是由变量的所有可能取值组合及其对应的函数值所构成的表格。真值表列写方法:每一个变量均有0、1两种取值,n个变量共有2i种不同的取值,将这2i种不同的取值按顺序(一般按二进制递增规律)排列起来,同时在相应位置上填入函数的值,便可得到逻辑函数的真值表。A B CY0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 100010011例如:当A=B=1、或则B=C=1时,函数Y=1;否则Y=0。逻辑图:是由表示逻辑运算的逻辑符号所构成的图形。Y&1&ABBC 卡诺图:是由表示变量的所有可能取值组合的小方格所构成的图形。逻辑函数卡诺图的填写方法:在那些使函
26、数值为1的变量取值组合所对应的小方格内填入1,其余的方格内填入0,便得到该函数的卡诺图。A B C000111100001010110 乘积项个数最少;每个乘积项中的变量个数也最少。CABACBCABADCBCBECACABAEBAY最简与或最简与或表达式表达式表达式中的或项最少;而且每个或项中的变量数最少。利用公式1,将两项合并为一项,并消去一个变量。BCCBCBBCCBBCAACBBCAABCY)()(1ABCBCABCAABCCBAABCCABAABCY)()(2若两个乘积项中分别若两个乘积项中分别包含同一个因子的原变量包含同一个因子的原变量和反变量,而其他因子都和反变量,而其他因子都相
27、同时,则这两项可以合相同时,则这两项可以合并成一项,并消去互为反并成一项,并消去互为反变量的因子。变量的因子。运用摩根定律运用分配律运用分配律BAFEBCDABAY)(1BABCDBADABADBCDABADCDBAY)()(2如果乘积项如果乘积项是另外一个乘积是另外一个乘积项的因子,则这项的因子,则这另外一个乘积项另外一个乘积项是多余的。是多余的。运用摩根定律()利用公式,消去多余的项。()利用公式,消去多余的变量。CABCABABCBAABCBCAABY)(DCBADBACBADBACBADBACCBADCBDCACBAY)()(如果一个乘积项如果一个乘积项的反是另一个乘积的反是另一个乘积
28、项的因子,则这个项的因子,则这个因子是多余的。因子是多余的。利用公式 消去多余的因子。AABABYA AC CDYA AC CD A C CD A C D 利用冗余律,将冗余项消去。DCACBAADEDCACBADCADEACBAY)(1CBABFGDEACCBABY)(2()利用公式(),为某一项配上其所缺的变量,以便用其它方法进行化简。CACBBABBCAACBCBACBABCACBACBACBBACCBACBAACBBABACBCBBAY)()1()1()()(()利用公式,为某项配上其所能合并的项。BCACABBCAABCCBAABCCABABCBCACBACABABCY)()()(讨
29、论题讨论题逻辑变量的取值为什么逻辑变量的取值为什么只有只有0和和1两种可能?会两种可能?会不会出现第三种可能?不会出现第三种可能?逻辑代数最基本的逻辑代数最基本的3种逻辑种逻辑运算是什么,分别举一个日运算是什么,分别举一个日常生活中的例子说明。常生活中的例子说明。何谓编码?何谓译码?何谓编码?何谓译码?二进制编码和二二进制编码和二十进十进制编码有何不同?制编码有何不同?多看、多练、多思考多看、多练、多思考10.2 组合逻辑电组合逻辑电路的分析与设计路的分析与设计组合电路组合电路:输出仅由输入决定,与电路当前状态:输出仅由输入决定,与电路当前状态无关;电路结构中无关;电路结构中无无反馈环路(无记
30、忆)。反馈环路(无记忆)。组合逻辑电路I0I1In-1Y0Y1Ym-1输入输出),(),(),(110111101111000nmmnnIIIfYIIIfYIIIfYABCY&10.2.1 组合逻辑电路的分析方法组合逻辑电路的分析方法逻辑图逻辑图逻辑表逻辑表达式达式 1 1 最简与或最简与或表达式表达式化简 2 ABY 1BCY 2CAY 31Y2Y3YY 2 CABCABY从输入到输出逐级写出ACBCABYYYY 321A B CY0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 100010111最简与或最简与或表达式表达式 3 真值表真值表CABCABY 3
31、4 电路的逻电路的逻辑功能辑功能当输入A、B、C中有2个或3个为1时,输出Y为1,否则输出Y为0。所以这个电路实际上是一种3人表决用的组合电路:只要有2票或3票同意,表决就通过。4 Y31111ABCYY1Y21逻辑图逻辑图BBACBABYYYYBYXYBAYCBAY213321逻辑表逻辑表达式达式BABBABBACBAY最简与或最简与或表达式表达式真值表真值表A B CY0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 111111100ABCY&用与非门实现用与非门实现电路的输出Y只与输入A、B有关,而与输入C无关。Y和A、B的逻辑关系为:A、B中只要一个为0,
32、Y=1;A、B全为1时,Y=0。所以Y和A、B的逻辑关系为与非运算的关系。电路的逻辑功能电路的逻辑功能ABBAY真值表真值表电路功电路功能描述能描述10.2.2 组合逻辑电路的设计组合逻辑电路的设计例:设计一个楼上、楼下开关的控制逻辑电路设计一个楼上、楼下开关的控制逻辑电路来控制楼梯上的路灯,使之在上楼前,用楼下来控制楼梯上的路灯,使之在上楼前,用楼下开关打开电灯,上楼后,用楼上开关关灭电灯;开关打开电灯,上楼后,用楼上开关关灭电灯;或者在下楼前,用楼上开关打开电灯,下楼后,或者在下楼前,用楼上开关打开电灯,下楼后,用楼下开关关灭电灯。用楼下开关关灭电灯。设楼上开关为设楼上开关为A,楼下开关为
33、,楼下开关为B,灯泡为,灯泡为Y。并。并设设A、B闭合时为闭合时为1,断开时为,断开时为0;灯亮时;灯亮时Y为为1,灯灭时灯灭时Y为为0。根据逻辑要求列出真值表。根据逻辑要求列出真值表。A BY0 00 11 01 10110 1 穷举法 1 2 逻辑表达式逻辑表达式或卡诺图或卡诺图最简与或最简与或表达式表达式化简 3 2 BABAY已为最简与或表达式 4 逻辑变换逻辑变换 5 逻辑电路图逻辑电路图ABY&ABY=1用与非门实现BABAYBAY用异或门实现真值表真值表电路功电路功能描述能描述:用与非门设计一个举重裁判表决电路。设举用与非门设计一个举重裁判表决电路。设举重比赛有重比赛有3个裁判,
34、一个主裁判和两个副裁判。杠个裁判,一个主裁判和两个副裁判。杠铃完全举上的裁决由每一个裁判按一下自己面前铃完全举上的裁决由每一个裁判按一下自己面前的按钮来确定。只有当两个或两个以上裁判判明的按钮来确定。只有当两个或两个以上裁判判明成功,并且其中有一个为主裁判时,表明成功的成功,并且其中有一个为主裁判时,表明成功的灯才亮。灯才亮。设主裁判为变量设主裁判为变量A,副裁判分别为,副裁判分别为B和和C;表示;表示成功与否的灯为成功与否的灯为Y,根据逻辑要求列出真值表。,根据逻辑要求列出真值表。1 穷举法 1 A B CYA B CY0 0 00 0 10 1 00 1 100001 0 01 0 11
35、1 01 1 10111 2 ABCCABCBAmmmY765 2 逻辑表达式逻辑表达式 ABC0001111001ABACY&3 卡诺图卡诺图最简与或最简与或表达式表达式化简 4 5 逻辑变换逻辑变换 6 逻辑电逻辑电路图路图 3 化简 4 111Y=AB+AC 5 ACABY 6 分析图中电路分析图中电路的逻辑功能:的逻辑功能:画出实现逻辑画出实现逻辑函数的逻辑电路。函数的逻辑电路。10.3 编码器编码器输 入I输 出Y3 Y2 Y1 Y00(I0)1(I1)2(I2)3(I3)4(I4)5(I5)6(I6)7(I7)8(I8)9(I9)0 0 0 00 0 0 10 0 1 00 0 1
36、 10 1 0 00 1 0 10 1 1 00 1 1 11 0 0 01 0 0 1输输入入10个互斥的数码个互斥的数码输输出出4位二进制代码位二进制代码真真值值表表9753197531076327632176547654298983IIIIIIIIIIYIIIIIIIIYIIIIIIIIYIIIIY逻辑表达式逻辑表达式I9 I8 I7I6I5I4 I3I2 I1 I0Y3 Y2 Y1 Y0(a)由或门构成1111I9 I8 I7I6I5I4 I3I2 I1 I0(b)由与非门构成Y3 Y2 Y1 Y0&逻辑图逻辑图 在优先编码器中优先级别高的信号排斥级别低的,即具有单方面排斥的特性。输
37、入I7 I6 I5 I4 I3 I2 I1 I0输 出Y2 Y1 Y010 10 0 10 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 11 1 11 1 01 0 11 0 00 1 10 1 00 0 10 0 0设I7的优先级别最高,I6次之,依此类推,I0最低。真真值值表表12463465671234567345675677024534567234567345676771456745675676772IIIIIIIIIIIIIIIIIIIIIIIIIIYIIIIIIIIIIIIIIIIIIIIIIYIIIIIIIIII
38、IIIIY逻辑图逻辑图111111&1&Y2 Y1 Y0I7 I6 I5 I4 I3 I2 I1 I08线线-3线线优优先先编编码码器器 如果要求输出、输入均为反变量,则只要在图中如果要求输出、输入均为反变量,则只要在图中的每一个输出端和输入端都加上反相器就可以了。的每一个输出端和输入端都加上反相器就可以了。什么是优先什么是优先编码器?编码器?什么是二什么是二十进十进制编码器?制编码器?什么是编码器?什么是编码器?答案在书中找答案在书中找10.4 译码器和数译码器和数字显示器字显示器二-十进制译码器的输入是十进制数的4位二进制编码(BCD码),分别用A3、A2、A1、A0表示;输出的是与10个
39、十进制数字相对应的10个信号,用Y9Y0表示。由于二-十进制译码器有4根输入线,10根输出线,所以又称为4线-10线译码器。把二-十进制代码翻译成10个十进制数字信号的电路,称为二-十进制译码器。A3 A2 A1 A0Y9 Y8 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y00 0 0 00 0 0 10 0 1 00 0 1 10 1 0 00 1 0 10 1 1 00 1 1 11 0 0 01 0 0 10 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 1 00 0 0 0 0 0 0 1 0 00 0 0 0 0 0 1 0 0 00 0 0 0 0 1 0 0
40、0 00 0 0 0 1 0 0 0 0 00 0 0 1 0 0 0 0 0 00 0 1 0 0 0 0 0 0 00 1 0 0 0 0 0 0 0 01 0 0 0 0 0 0 0 0 0真值表真值表01239012380123701236012350123401233012320123101230 AAAA YAAAAYAAAA YAAAAYAAAA YAAAAYAAAA YAAAAYAAAA YAAAAY A0 A1 A2 A3 Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y91111&逻辑表达式逻辑表达式逻辑图逻辑图采用完全译码方案 A0 A1 A2 A3 Y0 Y1
41、Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y91111&将与门换成与非门,则输出为将与门换成与非门,则输出为反变量,即为低电平有效反变量,即为低电平有效。16 15 14 13 12 11 10 974LS42 1 2 3 4 5 6 7 8VCC A0 A1 A2 A3 Y9 Y8 Y7Y0 Y1 Y2 Y3 Y4 Y5 Y6 GND 74LS42 A0 A1 A2 A3Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9A0 A1 A2 A3(a)引脚排列图(b)逻辑功能示意图 输出为反变量,即为低电平有效,并且采用完全译码方
42、案。用来驱动各种显示器件,从而将用二进制代码表示的数字、文字、符号翻译成人们习惯的形式直观地显示出来的电路,称为显示译码器。abcdefgh a b c d a f b e f g h g e c d(a)外形图(b)共阴极(c)共阳极+VCCabcdefghb=c=f=g=1,a=d=e=0时时c=d=e=f=g=1,a=b=0时时 16 15 14 13 12 11 10 974LS48 1 2 3 4 5 6 7 8VCC f g a b c d eA1 A2 LT BI/RBO RBI A3 A0 GND引脚排列图引脚排列图输 入输 出功 能 或十 进 制 数LT RBIA3 A2 A
43、1 A0RBOBI/a b c d e f gRBOBI/(灭 灯)LT(试 灯)RBI(动 态 灭 零)0 1 0 0 0 0 00(输 入)100 0 0 0 0 0 01 1 1 1 1 1 10 0 0 0 0 0 001234567891011121314151 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 00 0 0 10 0 1 00 0 1 10 1 0 00 1 0 10 1 1 00 1 1 11 0 0 01 0 0 11 0 1 01 0 1 11 1 0 01 1 0 11 1 1 01 1 1 111111111111111111 1 1 1 1 1 00 1 1 0 0 0 01 1 0 1 1 0 11 1 1 1 0 0 10 1 1 0 0 1 11 0 1 1 0 1 10 0 1 1 1 1 11 1 1 0 0 0 01 1 1 1 1 1 11 1 1 0 0 1 10 0 0 1 1 0 10 0 1 1 0 0 10 1 0 0 0 1 11 0 0 1 0 1 10 0 0 1 1 1 10 0 0 0 0 0 0显示译码器有哪显示译码器有哪几部分组成?各几部分组成?各部分的功能是什部分的功能是什么?么?什么是译码器?什么是译码器?74LS48如何与七段数如何与七段数码管相连接?码管相连接?Go!