2020年贵州省遵义市中考数学试题及参考答案(word解析版).docx

上传人(卖家):2023DOC 文档编号:5509602 上传时间:2023-04-23 格式:DOCX 页数:25 大小:341.34KB
下载 相关 举报
2020年贵州省遵义市中考数学试题及参考答案(word解析版).docx_第1页
第1页 / 共25页
2020年贵州省遵义市中考数学试题及参考答案(word解析版).docx_第2页
第2页 / 共25页
2020年贵州省遵义市中考数学试题及参考答案(word解析版).docx_第3页
第3页 / 共25页
2020年贵州省遵义市中考数学试题及参考答案(word解析版).docx_第4页
第4页 / 共25页
2020年贵州省遵义市中考数学试题及参考答案(word解析版).docx_第5页
第5页 / 共25页
点击查看更多>>
资源描述

1、遵义市2020年初中毕业生学业(升学)统一考试数学试题卷(全卷总分150分,考试时间120分钟)一、选择题(本题共12小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)13的绝对值是()A3 B3 C D32在文化旅游大融合的背景下,享受文化成为旅游业的新趋势今年“五一”假期,我市为游客和市民提供了丰富多彩的文化享受,各艺术表演馆、美术馆、公共图书馆、群众文化机构、非遗机构及文物机构累计接待游客18.25万人次,将18.25万用科学记数法表示为()A1.825105 B1.825106 C1.825107 D1.8251083一副直角三角板如图放置,使两三角板的斜边

2、互相平行,每块三角板的直角顶点都在另一三角板的斜边上,则1的度数为()A30 B45 C55 D604下列计算正确的是()Ax2+xx3 B(3x)26x2 C8x42x24x2 D(x2y)(x+2y)x22y25某校7名学生在某次测量体温(单位:)时得到如下数据:36.3,36.4,36.5,36.7,36.6,36.5,36.5,对这组数据描述正确的是()A众数是36.5 B中位数是36.7 C平均数是36.6 D方差是0.46已知x1,x2是方程x23x20的两根,则x12+x22的值为()A5 B10 C11 D137如图,把一块长为40cm,宽为30cm的矩形硬纸板的四角剪去四个相

3、同小正方形,然后把纸板的四边沿虚线折起,并用胶带粘好,即可做成一个无盖纸盒若该无盖纸盒的底面积为600cm2,设剪去小正方形的边长为xcm,则可列方程为()A(302x)(40x)600 B(30x)(40x)600C(30x)(402x)600 D(302x)(402x)6008新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点用S1、S2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是()A B C D9如图,在菱形ABCD中

4、,AB5,AC6,过点D作DEBA,交BA的延长线于点E,则线段DE的长为()A B C4 D10构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15时,如图在RtACB中,C90,ABC30,延长CB使BDAB,连接AD,得D15,所以tan152类比这种方法,计算tan22.5的值为()A+1 B1 C D11如图,ABO的顶点A在函数y(x0)的图象上,ABO90,过AO边的三等分点M、N分别作x轴的平行线交AB于点P、Q若四边形MNQP的面积为3,则k的值为()A9 B12 C15 D1812抛物线yax2+bx+c的对称轴是直线x2抛物线与x轴的一个交点在点(4,0)

5、和点(3,0)之间,其部分图象如图所示,下列结论中正确的个数有()4ab0;c3a;关于x的方程ax2+bx+c2有两个不相等实数根;b2+2b4acA1个 B2个 C3个 D4个二、填空题(本小题共4小题,每小题4分,共16分)13计算:的结果是 14如图,直线ykx+b(k、b是常数k0)与直线y2交于点A(4,2),则关于x的不等式kx+b2的解集为 15如图,对折矩形纸片ABCD使AD与BC重合,得到折痕MN,再把纸片展平E是AD上一点,将ABE沿BE折叠,使点A的对应点A落在MN上若CD5,则BE的长是 16如图,O是ABC的外接圆,BAC45,ADBC于点D,延长AD交O于点E,若

6、BD4,CD1,则DE的长是 三、解答题(本题共有8小题,共86分.解答时应写出必要的文字说明、证明过程成演算步骤)17(8分)计算:(1)sin30(3.14)0+()2;(2)解方程;18(8分)化简式子(x),从0、1、2中取一个合适的数作为x的值代入求值19(10分)某校为检测师生体温,在校门安装了某型号测温门如图为该测温门截面示意图,已知测温门AD的顶部A处距地面高为2.2m,为了解自己的有效测温区间身高1.6m的小聪做了如下实验:当他在地面N处时测温门开始显示额头温度,此时在额头B处测得A的仰角为18;在地面M处时,测温门停止显示额头温度,此时在额头C处测得A的仰角为60求小聪在地

7、面的有效测温区间MN的长度(额头到地面的距离以身高计,计算精确到0.1m,sin180.31,cos180.95,tan180.32)20(10分)如图,AB是O的直径,点C是O上一点,CAB的平分线AD交于点D,过点D作DEBC交AC的延长线于点E(1)求证:DE是O的切线;(2)过点D作DFAB于点F,连接BD若OF1,BF2,求BD的长度21(12分)遵义市各校都在深入开展劳动教育,某校为了解七年级学生一学期参加课外劳动时间(单位:h)的情况,从该校七年级随机抽查了部分学生进行问卷调查,并将调查结果绘制成如下不完整的频数分布表和频数分布直方图 课外劳动时间频数分布表:劳动时间分组频数频率

8、0t2020.120t404m40t6060.360t80a0.2580t10030.15解答下列问题:(1)频数分布表中a ,m ;将频数分布直方图补充完整;(2)若七年级共有学生400人,试估计该校七年级学生一学期课外劳动时间不少于60h的人数;(3)已知课外劳动时间在60ht80h的男生人数为2人,其余为女生,现从该组中任选2人代表学校参加“全市中学生劳动体验”演讲比赛,请用树状图或列表法求所选学生为1男1女的概率22(12分)为倡导健康环保,自带水杯已成为一种好习惯,某超市销售甲,乙两种型号水杯,进价和售价均保持不变,其中甲种型号水杯进价为25元/个,乙种型号水杯进价为45元/个,下表

9、是前两月两种型号水杯的销售情况:时间销售数量(个)销售收入(元)(销售收入售价销售数量)甲种型号乙种型号第一月2281100第二月38242460(1)求甲、乙两种型号水杯的售价;(2)第三月超市计划再购进甲、乙两种型号水杯共80个,这批水杯进货的预算成本不超过2600元,且甲种型号水杯最多购进55个,在80个水杯全部售完的情况下设购进甲种型号水杯a个,利润为w元,写出w与a的函数关系式,并求出第三月的最大利润23(12分)如图,在边长为4的正方形ABCD中,点E为对角线AC上一动点(点E与点A、C不重合),连接DE,作EFDE交射线BA于点F,过点E作MNBC分别交CD、AB于点M、N,作射

10、线DF交射线CA于点G(1)求证:EFDE;(2)当AF2时,求GE的长24(14分)如图,抛物线yax2+x+c经过点A(1,0)和点C(0,3)与x轴的另一交点为点B,点M是直线BC上一动点,过点M作MPy轴,交抛物线于点P(1)求该抛物线的解析式;(2)在抛物线上是否存在一点Q,使得QCO是等边三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)以M为圆心,MP为半径作M,当M与坐标轴相切时,求出M的半径答案与解析一、选择题(本题共12小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)13的绝对值是()A3 B3 C D3【知识考点】绝对值【思路分析】

11、根据绝对值的概念可得3的绝对值就是数轴上表示2的点与原点的距离进而得到答案【解题过程】解:3的绝对值是3,故选:A【总结归纳】此题主要考查了绝对值,关键是掌握概念:数轴上某个数与原点的距离叫做这个数的绝对值2在文化旅游大融合的背景下,享受文化成为旅游业的新趋势今年“五一”假期,我市为游客和市民提供了丰富多彩的文化享受,各艺术表演馆、美术馆、公共图书馆、群众文化机构、非遗机构及文物机构累计接待游客18.25万人次,将18.25万用科学记数法表示为()A1.825105 B1.825106 C1.825107 D1.825108【知识考点】科学记数法表示较大的数【思路分析】科学记数法的表示形式为a

12、10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同【解题过程】解:18.25万182500,用科学记数法表示为:1.825105故选:A【总结归纳】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值3一副直角三角板如图放置,使两三角板的斜边互相平行,每块三角板的直角顶点都在另一三角板的斜边上,则1的度数为()A30 B45 C55 D60【知识考点】平行线的性质【思路分析】根据平行线的性质即可得到结论【解题过程】解:ABCD,1D45,故选:B【总结归纳】此题考查平行线的性质,熟练掌握平行线的性质是解题

13、的关键4下列计算正确的是()Ax2+xx3 B(3x)26x2 C8x42x24x2 D(x2y)(x+2y)x22y2【知识考点】整式的混合运算【思路分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题【解题过程】解:x2+x不能合并,故选项A错误;(3x)29x2,故选项B错误;8x42x24x2,故选项C正确;(x2y)(x+2y)x24y2,故选项D错误;故选:C【总结归纳】本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法5某校7名学生在某次测量体温(单位:)时得到如下数据:36.3,36.4,36.5,36.7,36.6,36.5,36.5,对这组数据

14、描述正确的是()A众数是36.5 B中位数是36.7 C平均数是36.6 D方差是0.4【知识考点】算术平均数;中位数;众数;方差【思路分析】根据众数、中位数的概念求出众数和中位数,根据平均数和方差的计算公式求出平均数和方差【解题过程】解:7个数中36.5出现了三次,次数最多,即众数为36.5,故A选项正确,符合题意;将7个数按从小到大的顺序排列为:36.3,36.4,36.5,36.5,36.5,36.6,36.7,第4个数为36.5,即中位数为36.5,故B选项错误,不符合题意;(36.3+36.4+36.5+36.5+36.5+36.6+36.7)36.5,故C选项错误,不符合题意;S2

15、(36.336.5)2+(36.436.5)2+3(36.536.5)2+(36.636.5)2+(36.736.5)2,故D选项错误,不符合题意;故选:A【总结归纳】本题考查的是众数、平均数、方差、中位数,掌握它们的概念和计算公式是解题的关键6已知x1,x2是方程x23x20的两根,则x12+x22的值为()A5 B10 C11 D13【知识考点】根与系数的关系【思路分析】利用根与系数的关系得到x1+x23,x1x22,再利用完全平方公式得到x12+x22(x1+x2)22x1x2,然后利用整体代入的方法计算【解题过程】解:根据题意得x1+x23,x1x22,所以x12+x22(x1+x2)

16、22x1x2322(2)13故选:D【总结归纳】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c0(a0)的两根时,x1+x2,x1x27如图,把一块长为40cm,宽为30cm的矩形硬纸板的四角剪去四个相同小正方形,然后把纸板的四边沿虚线折起,并用胶带粘好,即可做成一个无盖纸盒若该无盖纸盒的底面积为600cm2,设剪去小正方形的边长为xcm,则可列方程为()A(302x)(40x)600 B(30x)(40x)600C(30x)(402x)600 D(302x)(402x)600【知识考点】由实际问题抽象出一元二次方程【思路分析】设剪去小正方形的边长是xcm,则纸盒底面的长

17、为(402x)cm,宽为(302x)cm,根据长方形的面积公式结合纸盒的底面积是600cm2,即可得出关于x的一元二次方程,此题得解【解题过程】解:设剪去小正方形的边长是xcm,则纸盒底面的长为(402x)cm,宽为(302x)cm,根据题意得:(302x)(402x)600故选:D【总结归纳】本题考查由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键8新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点用S1、S2分别表示乌龟和兔子

18、赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是()A B C D【知识考点】函数的图象【思路分析】乌龟是匀速行走的,图象为线段兔子是:跑停急跑,图象由三条折线组成;最后同时到达终点,即到达终点花的时间相同【解题过程】解:A此函数图象中,S2先达到最大值,即兔子先到终点,不符合题意;B此函数图象中,S2第2段随时间增加其路程一直保持不变,与“当它一觉醒来,发现乌龟已经超过它,于是奋力直追”不符,不符合题意;C此函数图象中,S1、S2同时到达终点,符合题意;D此函数图象中,S1先达到最大值,即乌龟先到终点,不符合题意故选:C【总结归纳】本题考查了函数图形,行程问题,分析清楚时间与路程的

19、关系是解本题的关键9如图,在菱形ABCD中,AB5,AC6,过点D作DEBA,交BA的延长线于点E,则线段DE的长为()A B C4 D【知识考点】勾股定理;菱形的性质;相似三角形的判定与性质【思路分析】由在菱形ABCD中,AB5,AC6,利用菱形的性质以及勾股定理,求得OB的长,继而可求得BD的长,然后由菱形的面积公式可求得线段DE的长【解题过程】解:如图四边形ABCD是菱形,AC6,ACBD,OAAC3,BD2OB,AB5,OB4,BD2OB8,S菱形ABCDABDEACBD,DE故选:D【总结归纳】此题考查了菱形的性质、勾股定理注意菱形的对角线互相垂直平分10构建几何图形解决代数问题是“

20、数形结合”思想的重要性,在计算tan15时,如图在RtACB中,C90,ABC30,延长CB使BDAB,连接AD,得D15,所以tan152类比这种方法,计算tan22.5的值为()A+1 B1 C D【知识考点】分母有理化;含30度角的直角三角形;解直角三角形【思路分析】在RtACB中,C90,ABC45,延长CB使BDAB,连接AD,得D22.5,设ACBC1,则ABBD,根据tan22.5计算即可【解题过程】解:在RtACB中,C90,ABC45,延长CB使BDAB,连接AD,得D22.5,设ACBC1,则ABBD,tan22.51,故选:B【总结归纳】本题考查解直角三角形的应用,解题的

21、关键是学会用转化的思想思考问题,学会把问题转化为特殊角,属于中考常考题型11如图,ABO的顶点A在函数y(x0)的图象上,ABO90,过AO边的三等分点M、N分别作x轴的平行线交AB于点P、Q若四边形MNQP的面积为3,则k的值为()A9 B12 C15 D18【知识考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;相似三角形的判定与性质【思路分析】易证ANQAMPAOB,由相似三角形的性质:面积比等于相似比的平方可求出ANQ的面积,进而可求出AOB的面积,则k的值也可求出【解题过程】解:NQMPOB,ANQAMPAOB,M、N是OA的三等分点,四边形MNQP的面积为3,SANQ

22、1,()2,SAOB9,k2SAOB18,故选:D【总结归纳】本题考查了相似三角形的判定和性质以及反比例函数k的几何意义,正确的求出SANQ1是解题的关键12抛物线yax2+bx+c的对称轴是直线x2抛物线与x轴的一个交点在点(4,0)和点(3,0)之间,其部分图象如图所示,下列结论中正确的个数有()4ab0;c3a;关于x的方程ax2+bx+c2有两个不相等实数根;b2+2b4acA1个 B2个 C3个 D4个【知识考点】根的判别式;二次函数图象与系数的关系;二次函数图象上点的坐标特征;抛物线与x轴的交点【思路分析】根据抛物线的对称轴可判断;由抛物线与x轴的交点及抛物线的对称性以及由x1时y

23、0可判断,由抛物线与x轴有两个交点,且顶点为(2,3),即可判断;利用抛物线的顶点的纵坐标为3得到3,即可判断【解题过程】解:抛物线的对称轴为直线x2,4ab0,所以正确;与x轴的一个交点在(3,0)和(4,0)之间,由抛物线的对称性知,另一个交点在(1,0)和(0,0)之间,x1时y0,且b4a,即ab+ca4a+c3a+c0,c3a,所以错误;抛物线与x轴有两个交点,且顶点为(2,3),抛物线与直线y2有两个交点,关于x的方程ax2+bx+c2有两个不相等实数根,所以正确;抛物线的顶点坐标为(2,3),3,b2+12a4ac,4ab0,b4a,b2+3b4ac,a0,b4a0,b2+2b4

24、ac,所以正确;故选:C【总结归纳】本题考查了二次函数图象与系数的关系:对于二次函数yax2+bx+c(a0),二次项系数a决定抛物线的开口方向和大小:当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c):抛物线与x轴交点个数由决定:b24ac0时,抛物线与x轴有2个交点;b24ac0时,抛物线与x轴有1个交点;b24ac0时,抛物线与x轴没有交点二、填空题(本小题共4小题,每小题4分,共16分)1

25、3计算:的结果是 【知识考点】实数的运算【思路分析】首先化简,然后根据实数的运算法则计算【解题过程】解:2故答案为:【总结归纳】本题主要考查算术平方根的开方及平方根的运算,属于基础题14如图,直线ykx+b(k、b是常数k0)与直线y2交于点A(4,2),则关于x的不等式kx+b2的解集为 【知识考点】一次函数与一元一次不等式;两条直线相交或平行问题【思路分析】结合函数图象,写出直线ykx+2在直线y2下方所对应的自变量的范围即可【解题过程】解:直线ykx+b与直线y2交于点A(4,2),x4时,y2,关于x的不等式kx+b2的解集为x4故答案为x4【总结归纳】本题考查了一次函数与一元一次不等

26、式:从函数图象的角度看,就是确定直线ykx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合15如图,对折矩形纸片ABCD使AD与BC重合,得到折痕MN,再把纸片展平E是AD上一点,将ABE沿BE折叠,使点A的对应点A落在MN上若CD5,则BE的长是 【知识考点】矩形的性质;翻折变换(折叠问题)【思路分析】在RtABM中,解直角三角形求出BAM30,再证明ABE30即可解决问题【解题过程】解:将矩形纸片ABCD对折一次,使边AD与BC重合,得到折痕MN,AB2BM,AMB90,MNBC将ABE沿BE折叠,使点A的对应点A落在MN上ABAB2BM在RtAMB中,AMB90,sinMAB,MA

27、B30,MNBC,CBAMAB30,ABC90,ABA60,ABEEBA30,BE故答案为:【总结归纳】本题考查了翻折变换,锐角三角函数的定义,平行线的性质,熟练掌握并灵活运用翻折变换的性质是解题的关键16如图,O是ABC的外接圆,BAC45,ADBC于点D,延长AD交O于点E,若BD4,CD1,则DE的长是 【知识考点】勾股定理;垂径定理;三角形的外接圆与外心【思路分析】连结OB,OC,OA,过O点作OFBC于F,作OGAE于G,根据圆周角定理可得BOC90,根据等腰直角三角形的性质和勾股定理可得DG,AG,可求AD,再根据相交弦定理可求DE【解题过程】解:连结OB,OC,OA,过O点作OF

28、BC于F,作OGAE于G,O是ABC的外接圆,BAC45,BOC90,BD4,CD1,BC4+15,OBOC,OA,OFBF,DFBDBF,OG,GD,在RtAGO中,AG,ADAG+GD,ADDEBDCD,DE故答案为:【总结归纳】考查了三角形的外接圆与外心,勾股定理,圆周角定理,等腰直角三角形的性质,解题的难点是求出AD的长三、解答题(本题共有8小题,共86分.解答时应写出必要的文字说明、证明过程成演算步骤)17(8分)计算:(1)sin30(3.14)0+()2;(2)解方程;【知识考点】实数的运算;零指数幂;负整数指数幂;解分式方程;特殊角的三角函数值【思路分析】(1)原式利用零指数幂

29、、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【解题过程】解:(1)原式1+43;(2)去分母得:2x33x6,解得:x3,经检验x3是分式方程的解【总结归纳】此题考查了解分式方程,以及实数的运算,熟练掌握运算法则及分式方程的解法是解本题的关键18(8分)化简式子(x),从0、1、2中取一个合适的数作为x的值代入求值【知识考点】分式的化简求值【思路分析】直接利用分式的性质进行通分运算,进而结合分式的混合运算法则分别化简得出答案【解题过程】解:原式,x0,2,当x1时,原式1【总结归纳】此题主要

30、考查了分式的化简求值,正确掌握分式的混合运算法则是解题关键19(10分)某校为检测师生体温,在校门安装了某型号测温门如图为该测温门截面示意图,已知测温门AD的顶部A处距地面高为2.2m,为了解自己的有效测温区间身高1.6m的小聪做了如下实验:当他在地面N处时测温门开始显示额头温度,此时在额头B处测得A的仰角为18;在地面M处时,测温门停止显示额头温度,此时在额头C处测得A的仰角为60求小聪在地面的有效测温区间MN的长度(额头到地面的距离以身高计,计算精确到0.1m,sin180.31,cos180.95,tan180.32)【知识考点】解直角三角形的应用坡度坡角问题;解直角三角形的应用仰角俯角

31、问题【思路分析】延长BC交AD于点E,构造直角ABE和矩形EDNB,通过解直角三角形分别求得BE、CE的长度,易得BC的值;然后根据矩形的性质知MNBC【解题过程】解:延长BC交AD于点E,则AEADDE0.6mBE1.875m,CE0.374m所以BCBECE1.528m所以MNBC1.5m答:小聪在地面的有效测温区间MN的长度约为1.5m【总结归纳】本题主要考查了解直角三角形的应用仰角俯角问题、坡度坡角问题,要求学生能借助仰角构造直角三角形并解直角三角形20(10分)如图,AB是O的直径,点C是O上一点,CAB的平分线AD交于点D,过点D作DEBC交AC的延长线于点E(1)求证:DE是O的

32、切线;(2)过点D作DFAB于点F,连接BD若OF1,BF2,求BD的长度【知识考点】角平分线的性质;勾股定理;垂径定理;圆周角定理;切线的判定与性质【思路分析】(1)连接OD,由等腰三角形的性质及角平分线的性质得出ADODAE,从而ODAE,由DEBC得E90,由两直线平行,同旁内角互补得出ODE90,由切线的判定定理得出答案;(2)先由直径所对的圆周角是直角得出ADB90,再由OF1,BF2得出OB的值,进而得出AF和BA的值,然后证明DBFABD,由相似三角形的性质得比例式,从而求得BD2的值,求算术平方根即可得出BD的值【解题过程】解:(1)连接OD,如图:OAOD,OADADO,AD

33、平分CAB,DAEOAD,ADODAE,ODAE,DEBC,E90,ODE180E90,DE是O的切线;(2)AB是O的直径,ADB90,OF1,BF2,OB3,AF4,BA6DFAB,DFB90,ADBDFB,又DBFABD,DBFABD,BD2BFBA2612BD2【总结归纳】本题考查了切线的判定与性质、相似三角形的判定与性质等知识点,熟练掌握圆的切线的判定与性质及圆中的相关计算是解题的关键21(12分)遵义市各校都在深入开展劳动教育,某校为了解七年级学生一学期参加课外劳动时间(单位:h)的情况,从该校七年级随机抽查了部分学生进行问卷调查,并将调查结果绘制成如下不完整的频数分布表和频数分布

34、直方图 课外劳动时间频数分布表:劳动时间分组频数频率0t2020.120t404m40t6060.360t80a0.2580t10030.15 解答下列问题:(1)频数分布表中a ,m ;将频数分布直方图补充完整;(2)若七年级共有学生400人,试估计该校七年级学生一学期课外劳动时间不少于60h的人数;(3)已知课外劳动时间在60ht80h的男生人数为2人,其余为女生,现从该组中任选2人代表学校参加“全市中学生劳动体验”演讲比赛,请用树状图或列表法求所选学生为1男1女的概率【知识考点】用样本估计总体;频数(率)分布表;频数(率)分布直方图;列表法与树状图法【思路分析】(1)根据频数分布表所给数

35、据即可求出a,m;进而可以补充完整频数分布直方图;(2)根据样本估计总体的方法即可估计该校七年级学生一学期课外劳动时间不少于60h的人数;(3)根据题意画出用树状图即可求所选学生为1男1女的概率【解题过程】解:(1)a(20.1)0.255,m4200.2,补全的直方图如图所示:故答案为:5,0.2;(2)400(0.25+0.15)160(人);(3)根据题意画出树状图,由树状图可知:共有20种等可能的情况,1男1女有12种,故所选学生为1男1女的概率为:P【总结归纳】本题考查了列表法与树状图法、用样本估计总体、频数(率)分布直方图,解决本题的关键是掌握概率公式22(12分)为倡导健康环保,

36、自带水杯已成为一种好习惯,某超市销售甲,乙两种型号水杯,进价和售价均保持不变,其中甲种型号水杯进价为25元/个,乙种型号水杯进价为45元/个,下表是前两月两种型号水杯的销售情况:时间销售数量(个)销售收入(元)(销售收入售价销售数量)甲种型号乙种型号第一月2281100第二月38242460(1)求甲、乙两种型号水杯的售价;(2)第三月超市计划再购进甲、乙两种型号水杯共80个,这批水杯进货的预算成本不超过2600元,且甲种型号水杯最多购进55个,在80个水杯全部售完的情况下设购进甲种型号水杯a个,利润为w元,写出w与a的函数关系式,并求出第三月的最大利润【知识考点】二元一次方程组的应用;一元一

37、次不等式组的应用;一次函数的应用【思路分析】(1)根据表格中的数据可以列出相应的二元一次方程组,从而可以求得甲、乙两种型号水杯的销售单价;(2)根据题意,可以得到w与a的函数关系式【解题过程】解:(1)设甲、乙两种型号水杯的销售单价分别为x元、y元,解得,答:甲、乙两种型号水杯的销售单价分别为30元、55元;(2)由题意可得,解得:50a55,w(3025)a+(5545)(80a)5a+800,故当a50时,W有最大值,最大为550,答:第三月的最大利润为550元【总结归纳】本题考查一次函数的应用、二元一次方程组的应用,解答本题的关键是明确题意,利用一次函数的性质解答23(12分)如图,在边

38、长为4的正方形ABCD中,点E为对角线AC上一动点(点E与点A、C不重合),连接DE,作EFDE交射线BA于点F,过点E作MNBC分别交CD、AB于点M、N,作射线DF交射线CA于点G(1)求证:EFDE;(2)当AF2时,求GE的长【知识考点】全等三角形的判定与性质;正方形的性质【思路分析】(1)要证明EFDE,只要证明DMEENF即可,然后根据题目中的条件和正方形的性质,可以得到DMEENF的条件,从而可以证明结论成立;(2)根据勾股定理和三角形相似,可以得到AG和CG、CE的长,然后即可得到GE的长【解题过程】(1)证明:四边形ABCD是正方形,AC是对角线,ECM45,MNBC,BCM

39、90,NMC+BCM180,MNB+B180,NMC90,MNB90,MECMCE45,DMEENF90,MCME,CDMN,DMEN,DEEF,EDM+DEM90,DEF90,DEM+FEN90,EDMFEN,在DME和ENF中,DMEENF(ASA),EFDE;(2)如图1所示,由(1)知,DMEENF,MENF,四边形MNBC是矩形,MCBN,又MEMC,AB4,AF2,BNMCNF1,EMC90,CE,AFCD,DGCFGA,ABBC4,B90,AC4,ACAG+GC,AG,CG,GEGCCE;如图2所示,同理可得,FNBN,AF2,AB4,AN1,ABBC4,B90,AC4,AFCD

40、,GAFGCD,即,解得,AG4,ANNE1,ENA90,AE,GEGA+AE5【总结归纳】本题考查正方形的性质、全等三角形的判定与性质、三角形相似,解答本题的关键是明确题意,利用数形结合的思想解答24(14分)如图,抛物线yax2+x+c经过点A(1,0)和点C(0,3)与x轴的另一交点为点B,点M是直线BC上一动点,过点M作MPy轴,交抛物线于点P(1)求该抛物线的解析式;(2)在抛物线上是否存在一点Q,使得QCO是等边三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)以M为圆心,MP为半径作M,当M与坐标轴相切时,求出M的半径【知识考点】二次函数综合题【思路分析】(1)把点A(1,0)和点C (0,3)代入yax2+x+c求出a与c的值即可得出抛物线的解析式;(2)当点Q在y轴右边时,假设QCO为等边三角形,过点Q作QHOC于H,OC3,则OH,tan60,求出Q(,),把x代入yx2+x+3,得y,则假设不成立;当点Q在y轴的左边时,假设QCO为等边三角形,过点Q作QTOC于T,OC3,则OT,tan60,求出Q(,),把x代入yx2+x+3,得y,则假设不成立;(3)求出B(4,0),待定系数法得出BC直线的解析式yx+3,当M在线段BC上,M与x轴相切时,延长PM交AB于点

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初中 > 数学 > 中考复习 > 模拟试题
版权提示 | 免责声明

1,本文(2020年贵州省遵义市中考数学试题及参考答案(word解析版).docx)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|