一元二次方程(知识点+考点+题型总结)精编版.doc

上传人(卖家):2023DOC 文档编号:5516981 上传时间:2023-04-23 格式:DOC 页数:6 大小:437.50KB
下载 相关 举报
一元二次方程(知识点+考点+题型总结)精编版.doc_第1页
第1页 / 共6页
一元二次方程(知识点+考点+题型总结)精编版.doc_第2页
第2页 / 共6页
一元二次方程(知识点+考点+题型总结)精编版.doc_第3页
第3页 / 共6页
一元二次方程(知识点+考点+题型总结)精编版.doc_第4页
第4页 / 共6页
一元二次方程(知识点+考点+题型总结)精编版.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、一元二次方程专题复习考点一、概念(1)定义:只含有一个未知数,并且未知数的最高次数是2,这样的整式方程就是一元二次方程。 (2)一般表达式: 难点:如何理解 “未知数的最高次数是2”:该项系数不为“0”;未知数指数为“2”;若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。典型例题:例1、下列方程中是关于x的一元二次方程的是( )A B C D 变式:当k 时,关于x的方程是一元二次方程。例2、方程是关于x的一元二次方程,则m的值为 。针对练习:1、方程的一次项系数是 ,常数项是 。2、若方程是关于x的一元一次方程,求m的值;写出关于x的一元一次方程。3、若方程是关于x的

2、一元二次方程,则m的取值范围是 。4、若方程nxm+xn-2x2=0是一元二次方程,则下列不可能的是( )A.m=n=2 B.m=2,n=1 C.n=2,m=1 D.m=n=1考点二、方程的解概念:使方程两边相等的未知数的值,就是方程的解。应用:利用根的概念求代数式的值; 典型例题:例1、已知的值为2,则的值为 。例2、关于x的一元二次方程的一个根为0,则a的值为 。例3、已知关于x的一元二次方程的系数满足,则此方程必有一根为 。例4、已知是方程的两个根,是方程的两个根,则m的值为 。针对练习:1、已知方程的一根是2,则k为 ,另一根是 。2、已知关于x的方程的一个解与方程的解相同。求k的值;

3、 方程的另一个解。3、已知m是方程的一个根,则代数式 。4、已知是的根,则 。5、方程的一个根为( )A B 1 C D 6、若 。考点三、解法方法:直接开方法;因式分解法;配方法;公式法关键点:降次类型一、直接开方法:对于,等形式均适用直接开方法典型例题:例1、解方程: =0; 例2、若,则x的值为 。针对练习:下列方程无解的是( )A. B. C. D.类型二、因式分解法:方程特点:左边可以分解为两个一次因式的积,右边为“0”,方程形式:如, ,典型例题:例1、的根为( )A B C D 例2、若,则4x+y的值为 。变式1: 。变式2:若,则x+y的值为 。变式3:若,则x+y的值为 。

4、例3、方程的解为( )A. B. C. D.例4、解方程: 例5、已知,则的值为 。变式:已知,且,则的值为 。针对练习:1、下列说法中:方程的二根为,则 . 方程可变形为正确的有( ) A.1个 B.2个 C.3个 D.4个2、以与为根的一元二次方程是()A B C D3、写出一个一元二次方程,要求二次项系数不为1,且两根互为倒数: 写出一个一元二次方程,要求二次项系数不为1,且两根互为相反数: 4、若实数x、y满足,则x+y的值为( )A、-1或-2 B、-1或2 C、1或-2 D、1或25、方程:的解是 。6、已知,且,求的值。7、方程的较大根为r,方程的较小根为s,则s-r的值为 。类

5、型三、配方法在解方程中,多不用配方法;但常利用配方思想求解代数式的值或极值之类的问题。典型例题:例1、 试用配方法说明的值恒大于0。例2、 已知x、y为实数,求代数式的最小值。例3、 已知为实数,求的值。例4、 分解因式:针对练习:1、试用配方法说明的值恒小于0。2、已知,则 .3、若,则t的最大值为 ,最小值为 。4、如果,那么的值为 。类型四、公式法条件:公式: ,典型例题:例1、选择适当方法解下列方程: 例2、在实数范围内分解因式:(1); (2). 说明:对于二次三项式的因式分解,如果在有理数范围内不能分解,一般情况要用求根公式,这种方法首先令=0,求出两根,再写成=.分解结果是否把二

6、次项系数乘进括号内,取决于能否把括号内的分母化去.类型五、 “降次思想”的应用求代数式的值; 解二元二次方程组。典型例题:例1、 已知,求代数式的值。例2、如果,那么代数式的值。例3、已知是一元二次方程的一根,求的值。例4、用两种不同的方法解方程组说明:解二元二次方程组的具体思维方法有两种:先消元,再降次;先降次,再消元。但都体现了一种共同的数学思想化归思想,即把新问题转化归结为我们已知的问题.考点四、根的判别式根的判别式的作用:定根的个数;求待定系数的值;应用于其它。典型例题:例1、若关于的方程有两个不相等的实数根,则k的取值范围是 。例2、关于x的方程有实数根,则m的取值范围是( )A.

7、B. C. D.例3、已知关于x的方程(1)求证:无论k取何值时,方程总有实数根;(2)若等腰ABC的一边长为1,另两边长恰好是方程的两个根,求ABC的周长。例4、已知二次三项式是一个完全平方式,试求的值.例5、为何值时,方程组有两个不同的实数解?有两个相同的实数解?针对练习:1、当k 时,关于x的二次三项式是完全平方式。2、当取何值时,多项式是一个完全平方式?这个完全平方式是什么?3、已知方程有两个不相等的实数根,则m的值是 .4、为何值时,方程组(1)有两组相等的实数解,并求此解;(2)有两组不相等的实数解;(3)没有实数解. 5、当取何值时,方程的根与均为有理数?考点五、方程类问题中的“

8、分类讨论”典型例题:例1、关于x的方程有两个实数根,则m为 ,只有一个根,则m为 。 例2、 不解方程,判断关于x的方程根的情况。例3、如果关于x的方程及方程均有实数根,问这两方程是否有相同的根?若有,请求出这相同的根及k的值;若没有,请说明理由。考点六、应用解答题“握手”问题;“利率”问题;“几何”问题;“最值”型问题;“图表”类问题典型例题:1、五羊足球队的庆祝晚宴,出席者两两碰杯一次,共碰杯990次,问晚宴共有多少人出席?2、某小组每人送他人一张照片,全组共送了90张,那么这个小组共多少人?3、北京申奥成功,促进了一批产业的迅速发展,某通讯公司开发了一种新型通讯产品投放市场,根据计划,第

9、一年投入资金600万元,第二年比第一年减少,第三年比第二年减少,该产品第一年收入资金约400万元,公司计划三年内不仅要将投入的总资金全部收回,还要盈利,要实现这一目标,该产品收入的年平均增长率约为多少?(结果精确到0.1,)4、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克,销售单价每涨1元,月销售量就减少10千克,针对此回答:(1)当销售价定为每千克55元时,计算月销售量和月销售利润。(2)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?5、将一条长20cm的铁丝剪成两段,并以每一段铁丝的

10、长度为周长作成一个正方形。(1)要使这两个正方形的面积之和等于17cm2,那么这两段铁丝的长度分别为多少?(2)两个正方形的面积之和可能等于12cm2吗?若能,求出两段铁丝的长度;若不能,请说明理由。(3)两个正方形的面积之和最小为多少?6、A、B两地间的路程为36千米.甲从A地,乙从B地同时出发相向而行,两人相遇后,甲再走2小时30分到达B地,乙再走1小时36分到达A地,求两人的速度.考点七、根与系数的关系前提:对于而言,当满足、时,才能用韦达定理。主要内容:应用:整体代入求值。典型例题:例1、已知一个直角三角形的两直角边长恰是方程的两根,则这个直角三角形的斜边是( ) A. B.3 C.6 D.例2、已知关于x的方程有两个不相等的实数根,(1)求k的取值范围;(2)是否存在实数k,使方程的两实数根互为相反数?若存在,求出k的值;若不存在,请说明理由。例3、小明和小红一起做作业,在解一道一元二次方程(二次项系数为1)时,小明因看错常数项,而得到解为8和2,小红因看错了一次项系数,而得到解为-9和-1。你知道原来的方程是什么吗?其正确解应该是多少?例4、已知,求 变式:若,则的值为 。例5、已知是方程的两个根,那么 .针对练习:1、解方程组2已知,求的值。3、已知是方程的两实数根,求的值。

展开阅读全文
相关资源
猜你喜欢
  • 课件反电信网络诈骗法主要内容2022年《反电信网络诈骗法》学习解读反电信网络诈骗法(含内容)课程(PPT).pptx 课件反电信网络诈骗法主要内容2022年《反电信网络诈骗法》学习解读反电信网络诈骗法(含内容)课程(PPT).pptx
  • 课件关于推进用水权改革的指导意见蓝色2022年《关于推进用水权改革的指导意见》课程(PPT).pptx 课件关于推进用水权改革的指导意见蓝色2022年《关于推进用水权改革的指导意见》课程(PPT).pptx
  • 课件关于支持山东深化新旧动能转换推动绿色低碳高质量发展的意见蓝色2022年关于支持山东深化新旧动能转换推动绿色低碳高质量发展的意见课程(PPT).pptx 课件关于支持山东深化新旧动能转换推动绿色低碳高质量发展的意见蓝色2022年关于支持山东深化新旧动能转换推动绿色低碳高质量发展的意见课程(PPT).pptx
  • 课件关于支持山东深化新旧动能转换推动绿色低碳高质量发展的意见看点焦点2022年关于支持山东深化新旧动能转换推动绿色低碳高质量发展的意见课程(PPT).pptx 课件关于支持山东深化新旧动能转换推动绿色低碳高质量发展的意见看点焦点2022年关于支持山东深化新旧动能转换推动绿色低碳高质量发展的意见课程(PPT).pptx
  • 课件关于办理信息网络犯罪案件适用刑事诉讼程序若干问题的意见主要内容2022年新发布《关于办理信息网络犯罪案件适用刑事诉讼程序若干问题的意见》课程(PPT).pptx 课件关于办理信息网络犯罪案件适用刑事诉讼程序若干问题的意见主要内容2022年新发布《关于办理信息网络犯罪案件适用刑事诉讼程序若干问题的意见》课程(PPT).pptx
  • 课件关于支持山东深化新旧动能转换推动绿色低碳高质量发展的意见主要内容2022年关于支持山东深化新旧动能转换推动绿色低碳高质量发展的意见课程(PPT).pptx 课件关于支持山东深化新旧动能转换推动绿色低碳高质量发展的意见主要内容2022年关于支持山东深化新旧动能转换推动绿色低碳高质量发展的意见课程(PPT).pptx
  • 课件关于进一步规范行政裁量权基准制定和管理工作的意见主要内容2022年《关于进一步规范行政裁量权基准制定和管理工作的意见》课程(PPT).pptx 课件关于进一步规范行政裁量权基准制定和管理工作的意见主要内容2022年《关于进一步规范行政裁量权基准制定和管理工作的意见》课程(PPT).pptx
  • 课件关于支持山东深化新旧动能转换推动绿色低碳高质量发展的意见全文解读2022年关于支持山东深化新旧动能转换推动绿色低碳高质量发展的意见课程(PPT).pptx 课件关于支持山东深化新旧动能转换推动绿色低碳高质量发展的意见全文解读2022年关于支持山东深化新旧动能转换推动绿色低碳高质量发展的意见课程(PPT).pptx
  • 课件贯彻落实《农产品质量安全法》农产品质量安全法全文内容2022年《农产品质量安全法》课程(PPT).pptx 课件贯彻落实《农产品质量安全法》农产品质量安全法全文内容2022年《农产品质量安全法》课程(PPT).pptx
  • 相关搜索
    资源标签

    当前位置:首页 > 办公、行业 > 待归类文档
    版权提示 | 免责声明

    1,本文(一元二次方程(知识点+考点+题型总结)精编版.doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
    2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
    3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


    侵权处理QQ:3464097650--上传资料QQ:3464097650

    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


    163文库-Www.163Wenku.Com |网站地图|