1、 平面直角坐标系与函数一、 知识清单梳理知识点一:平面直角坐标系 关键点拨及对应举例1.相关概念(1)定义:在平面内有公共原点且互相垂直的两条数轴构成平面直角坐标系(2)几何意义:坐标平面内任意一点M与有序实数对(x,y)的关系是一一对应点的坐标先读横坐标(x轴),再读纵坐标(y轴).2.点的坐标特征( 1 )各象限内点的坐标的符号特征(如图所示): 点P(x,y)在第一象限x0,y0; 点P(x,y)在第二象限x0,y0; 点P(x,y)在第三象限x0,y0; 点P(x,y)在第四象限x0,y0.(2) 坐标轴上点的坐标特征:在横轴上y0;在纵轴上x0;原点x0,y0.(3)各象限角平分线上
2、点的坐标 第一、三象限角平分线上的点的横、纵坐标相等;第二、四象限角平分线上的点的横、纵坐标互为相反数(4)点P(a,b)的对称点的坐标特征:关于x轴对称的点P1的坐标为(a,b);关于y轴对称的点P2的坐标为(a,b);关于原点对称的点P3的坐标为(a,b)(5)点M(x,y)平移的坐标特征: M(x,y) M1(x+a,y) M2(x+a,y+b) (1)坐标轴上的点不属于任何象限.(2)平面直角坐标系中图形的平移,图形上所有点的坐标变化情况相同.(3)平面直角坐标系中求图形面积时,先观察所求图形是否为规则图形,若是,再进一步寻找求这个图形面积的因素,若找不到,就要借助割补法,割补法的主要
3、秘诀是过点向x轴、y轴作垂线,从而将其割补成可以直接计算面积的图形来解决.3.坐标点的距离问题(1)点M(a,b)到x轴,y轴的距离:到x轴的距离为|b|;)到y轴的距离为|a|(2)平行于x轴,y轴直线上的两点间的距离:点M1(x1,0),M2(x2,0)之间的距离为|x1x2|,点M1(x1,y),M2(x2,y)间的距离为|x1x2|;点M1(0,y1),M2(0,y2)间的距离为|y1y2|,点M1(x,y1),M2(x,y2)间的距离为|y1y2|平行于x轴的直线上的点纵坐标相等;平行于y轴的直线上的点的横坐标相等.知识点二:函 数4.函数的相关概念(1)常量、变量:在一个变化过程中
4、,数值始终不变的量叫做常量,数值发生变化的量叫做变量(2)函数:在一个变化过程中,有两个变量x和y,对于x的每一个值,y都有唯一确定的值与其对应,那么就称x是自变量,y是x的函数函数的表示方法有:列表法、图像法、解析法.(3)函数自变量的取值范围:一般原则为:整式为全体实数;分式的分母不为零;二次根式的被开方数为非负数;使实际问题有意义失分点警示函数解析式,同时有几个代数式,函数自变量的取值范围应是各个代数式中自变量的公共部分. 例:函数y=中自变量的取值范围是x-3且x5.5.函数的图象(1)分析实际问题判断函数图象的方法:找起点:结合题干中所给自变量及因变量的取值范围,对应到图象中找对应点
5、;找特殊点:即交点或转折点,说明图象在此点处将发生变化;判断图象趋势:判断出函数的增减性,图象的倾斜方向.(2)以几何图形(动点)为背景判断函数图象的方法: 设时间为t(或线段长为x),找因变量与t(或x)之间存在的函数关系,用含t(或x)的式子表示, 再找相应的函数图象.要注意是否需要分类讨论自变量的取值范围.读取函数图象增减性的技巧:当函数图象从左到右呈“上升”(“下降”)状态时,函数y随x的增大而增大(减小);函数值变化越大,图象越陡峭;当函数y值始终是同一个常数,那么在这个区间上的函数图象是一条平行于x轴的线段. 一次函数二、 知识清单梳理知识点一 :一次函数的概念及其图象、性质关键点
6、拨与对应举例1.一次函数的相关概念(1)概念:一般来说,形如ykxb(k0)的函数叫做一次函数特别地,当b 0时,称为正比例函数(2)图象形状:一次函数ykxb是一条经过点(0,b)和(-b/k,0)的直线.特别地,正比例函数ykx的图象是一条恒经过点(0,0)的直线.例:当k1时,函数ykxk1是正比例函数,2.一次函数的性质k,b符号K0,b0K0,b0K0,b=0k0k0,b0k0图象经过第一、三象限(x、y同号)每个象限内,函数y的值随x的增大而减小.k时,y随x的增大而增大;当x时,y随x的增大而减小.当x时,y随x的增大而减小;当x时,y随x的增大而增大.最值x=,y最小.x=,y
7、最大.3.系数a、b、ca决定抛物线的开口方向及开口大小当a0时,抛物线开口向上;当a0时,抛物线开口向下.某些特殊形式代数式的符号: ab+c即为x=1时,y的值;4a2b+c即为x=2时,y的值. 2a+b的符号,需判断对称轴-b/2a与1的大小.若对称轴在直线x=1的左边,则-b/2a1,再根据a的符号即可得出结果.2a-b的符号,需判断对称轴与-1的大小.a、 b决定对称轴(x=-b/2a)的位置当a,b同号,-b/2a0,对称轴在y轴左边;当b0时, -b/2a=0,对称轴为y轴;当a,b异号,-b/2a0,对称轴在y轴右边c决定抛物线与y轴的交点的位置当c0时,抛物线与y轴的交点在
8、正半轴上;当c0时,抛物线经过原点;当c0时,抛物线与y轴的交点在负半轴上.b24ac决定抛物线与x轴的交点个数b24ac0时,抛物线与x轴有2个交点;b24ac0时,抛物线与x轴有1个交点;b24ac0时,抛物线与x轴没有交点知识点三 :二次函数的平移4.平移与解析式的关系注意:二次函数的平移实质是顶点坐标的平移,因此只要找出原函数顶点的平移方式即可确定平移后的函数解析式失分点警示:抛物线平移规律是“上加下减,左加右减”,左右平移易弄反.例:将抛物线y=x2沿x轴向右平移2个单位后所得抛物线的解析式是y=(x2)2知识点四 :二次函数与一元二次方程以及不等式5.二次函数与一元二次方程二次函数
9、y=ax2bxc(a0)的图象与x轴交点的横坐标是一元二次方程ax2+bx+c=0的根.当b24ac0,两个不相等的实数根;当b24ac0,两个相等的实数根;当b24ac0,无实根例:已经二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两个实数根为2,1.6.二次函数与不等式抛物线y= ax2bxc0在x轴上方的部分点的纵坐标都为正,所对应的x的所有值就是不等式ax2bxc0的解集;在x轴下方的部分点的纵坐标均为负,所对应的x的值就是不等式ax2bxc0的解集.第13讲 二次函数的应用五、 知识清单梳理知识点一:二次函数的应用
10、 关键点拨实物抛物线一般步骤若题目中未给出坐标系,则需要建立坐标系求解,建立的原则:所建立的坐标系要使求出的二次函数表达式比较简单;使已知点所在的位置适当(如在x轴,y轴、原点、抛物线上等),方便求二次函数丶表达式和之后的计算求解. 据题意,结合函数图象求出函数解析式;确定自变量的取值范围;根据图象,结合所求解析式解决问题.实际问题中求最值 分析问题中的数量关系,列出函数关系式; 研究自变量的取值范围; 确定所得的函数; 检验x的值是否在自变量的取值范围内,并求相关的值;解决提出的实际问题.解决最值应用题要注意两点:设未知数,在“当某某为何值时,什么最大(最小)”的设问中,“某某”要设为自变量,“什么”要设为函数;求解最值时,一定要考虑顶点(横、纵坐标)的取值是否在自变量的取值范围内.结合几何图形 根据几何图形的性质,探求图形中的关系式; 根据几何图形的关系式确定二次函数解析式; 利用配方法等确定二次函数的最值,解决问题由于面积等于两条边的乘积,所以几何问题的面积的最值问题通常会通过二次函数来解决.同样需注意自变量的取值范围.