1、七年级数学期中综合测试题一 选择题(每小题3分,共12题,共计36分)1.计算3的平方根是( ) A. B.9 C. D.92.下列运算中,正确的是( )A.3 B.2 C. D.3.在下列各数0、中,无理数的个数是( ) A.1 B.2 C.3 D. 44.平面直角坐标系中, 点(-2,4)关于x轴的对称点在( )A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限5.如图,点E在AC的延长线上,下列条件中能判断AB/CD( )A. B. C. D. 第5题图 第6题图6.如图,ABCDEF,AFCG,则图中与A(不包括A)相等的角有( ) A.1个 B.2个 C.3个 D.4个7
2、.某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是( ) A.第一次左拐30,第二次右拐30 B.第一次右拐50,第二次左拐130 C.第一次右拐50,第二次右拐130 D.第一次向左拐50,第二次向左拐1308.在平面直角坐标系中,线段AB是由线段AB经过平移得到的,已知点A(2,1)的对应点为A(3,1),点B的对应点为B(4,0),则点B的坐标为( ) A(9,0) B(1,0) C(3,1) D(3,1)9.一个正方形的面积为21,它的边长为a,则a-1的边长大小为( )A.2与3之间 B.3与4之间 C.4与5之间 D.5与6之间10.一个长方形在平面
3、直角坐标系中,三个顶点的坐标分别是(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标是( ) A.(2,2) B.(3,3) C.(3,2) D.(2,3)11.给出下列说法: 两条直线被第三条直线所截,同位角相等; 平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;相等的两个角是对顶角;从直线外一点到这条直线的垂线段,叫做这点到直线的距离.其中正确的有( ) A.0个 B.1个 C.2个 D.3个12.如图,如果AB/EF,EF/CD,下列各式正确的是( )A.1+23=90 B.12+3=90 C.1+2+3=90 D.2+31=180二 填空题(每小题3分,共6题
4、,共计18分)13.把命题“对顶角相等”改写成“如果,那么”形式为: 14.的平方根为 ;若x2=9,y3=-8,则x+y_;15.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D,C分别在M,N的位置上,若EFG=56,则1=_,2=_16.已知点P(2a-6,a+1),若点P在坐标轴上,则点P的坐标为 17.如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(-1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,依此规律跳动下去,P4的坐标是 ,点
5、P第8次跳动至P8的坐标为 ;则点P第256次跳动至P256的坐标是 .18.如图1,将三角板ABC与三角板ADE摆放在一起;如图2,固定三角板ABC,将三角板ADE绕点A按顺时针方向旋转,记旋转角CAE=(0180)当ADE的一边与ABC的某一边平行(不共线)时,写出旋转角的所有可能的度数为 三 综合计算题(共7题,共计66分)19.(8分)计算: (1) (2)20.(8分)解方程或方程组: (1)(1-2x)2 -36= 0 (2)21.(8分)看图填空:已知如图,ADBC于D,EGBC于G,E =1.求证:AD平分BAC。证明:ADBC于D,EGBC于G( ) ADC =90,EGC
6、= 90( )ADC =EGC( )AD/EG( ) 1=2( ) E=3( )又E=1( 已知)2 =3( )AD平分BAC( )。 22.(10分)已知在平面直角坐标系中,已知A(3,4),B(3,-1),C(-3,-2),D(-2,3)(1)在图上画出四边形ABCD,并求四边形ABCD的面积;(2)若P为四边形ABCD形内一点,已知P坐标为(-1,1),将四边形ABCD通过平移后,P的坐标变为(2,-2),根据平移的规则,请直接写出四边形ABCD平移后的四个顶点的坐标.23.(10分)已知是m+3的算术平方根,是n-2的立方根,试求MN的值24.(10分)(可选一)MFNF于F,MF交A
7、B于点E,NF交CD于点G,1=140,2=50,试判断AB和CD的位置关系,并说明理由25.(10分)如图,在平面直角坐标系中,A,B坐标分别为A(0,a),B(b,a),且a,b满足(a-3)2+|b-5|=0,现同时将点A,B分别向下平移3个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB(1)求点C,D的坐标及四边形ABDC的面积S四边形ABCD;(2)在y轴上是否存在一点M,连接MC,MD,使SMCD=S四边形ABDC?若存在这样一点,求出点M的坐标,若不存在,试说明理由(3)点P是线段BD上的一个动点,连接PA,PO,当点P在BD上移动时(不与B,D重
8、合),的值是否发生变化.并说明理由七年级数学下册期中综合测试题答案1.A 2.C 3.C 4.C 5.B 6.D 7.A 8.A 9.B 10.C 11.B 12.解答:解:ABEF,2+BOE=180,BOE=1802,同理可得COF=1803,O在EF上,BOE+1+COF=180,1802+1+1803=180,即2+31=180,故选D13.如果两个角时对顶角,那么这两个角相等.14.2,1或-5 15.680 ,112016.当P在x轴上时,a+1=0,a=-1,P(-8,0);当P在y轴上时,2a-6=0,a=3,P(0,4)所以P(-8,0)或(0,4).17.P4(2,2),P
9、8(3,3),P256(9,9)18.当AD/BC时,300;当DE/BC时,600;当AE/BC时,150019.(1) (2)20.(1) (2) 21.看图填空:已知如图,ADBC于D,EGBC于G,E =1.求证:AD平分BAC。证明:ADBC于D,EGBC于G( 已知 ) ADC =90,EGC = 90( 垂直定义 )ADC =EGC( 等量代换 )AD/EG( 同位角相等,两直线平行 ) 1=2( 两直线平行,内错角相等 ) E=3( 两直线平行,同位角相等 )又E=1( 已知)2 =3( 等量代换 )AD平分BAC( 角平分线定义 )。22.四边形ABCD的面积为:30-3-2
10、-2.5=30-7.5=22.5平移后的点坐标A(6,1),B(6,-4),C(0,-5),D(1,0)23.解答: 解:因为M=是m+3的算术平方根,N=是n2的立方根,所以可得:m4=2,2m4n+3=3,解得:m=6,n=3,把m=6,n=3代入m+3=9,n2=1,所以可得M=3,N=1,把M=3,N=1代入MN=31=224.(1)过F作FH/AB 因为AB/FH 所以2=EFH 因为FNFM 所以EFG=900 因为2=500,所以EFH=400 所以EFH+EFH=1800 所以CD/FH 因为AB/CD,AB/FH 所以AB/CD.(2) 因为BDAC,EFAC 所以BD/EF 所以2=CBD 因为2=1 所以1=CBD 所以GF/BC 因为BC/DM 所以MD/GF 所以AMD=AGF.25.(1)a=3,b=5 四边形ABCD的面积为18 (2)M(0,6)或(0,-6) (3)过P点作PE/AB BAP+DOP=APO