1、因式分解常用方法把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下:一、提公因式法. 如多项式其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式二、运用公式法.运用公式法,即用 三、分组分解法.(一)分组后能直接提公因式例1、分解因式:分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。解:原式= = 每组之间还有公因式! = 思考
2、:此题还可以怎样分组?此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提。例2、分解因式:解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。 第二、三项为一组。解:原式= 原式= = = = =(二)分组后能直接运用公式 例3、分解因式:分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。 解:原式= = = 例4、分解因式: 解:原式= = =练习:分解因式3、 4、练习:(1) (2)(3) (4)(5) (6)(7) (8)(9) (10)(11)(12)四、十字相乘法.(一
3、)二次项系数为1的二次三项式直接利用公式进行分解。特点:(1)二次项系数是1; (2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和。 例5、分解因式:分析:将6分成两个数相乘,且这两个数的和要等于5。 由于6=23=(-2)(-3)=16=(-1)(-6),从中可以发现只有23的分解适合,即2+3=5。 1 2解:= 1 3 = 12+13=5用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。例6、分解因式:解:原式= 1 -1 = 1 -6 (-1)+(-6)= -7练习5、分解因式(1) (2) (3)练习6、分解因式(1) (2)
4、(3)(二)二次项系数不为1的二次三项式条件:(1) (2) (3) 分解结果:=例7、分解因式:分析: 1 -2 3 -5 (-6)+(-5)= -11解:=练习7、分解因式:(1) (2) (3) (4)(三)二次项系数为1的齐次多项式例8、分解因式:分析:将看成常数,把原多项式看成关于的二次三项式,利用十字相乘法进行分解。 1 8b 1 -16b 8b+(-16b)= -8b 解:= =练习8、分解因式(1)(2)(3)(四)二次项系数不为1的齐次多项式例9、 例10、 1 -2y 把看作一个整体 1 -1 2 -3y 1 -2 (-3y)+(-4y)= -7y (-1)+(-2)= -
5、3 解:原式= 解:原式=练习9、分解因式:(1) (2)综合练习10、(1) (2)(3) (4)(5) (6)(7)(8)(9)(10)思考:分解因式:五、主元法. 例11、分解因式: 5 -2解法一:以为主元 2 -1 解:原式= (-5)+(-4)= -9 = 1 -(5y-2) = 1 (2y-1) = -(5y-2)+(2y-1)= -(3y-1)解法二:以为主元 1 -1 解:原式= 1 2 = -1+2=1= 2 (x-1)= 5 -(x+2) = 5(x-1)-2(x+2)=(3x-9)练习11、分解因式(1) (2)(3) (4)六、双十字相乘法。定义:双十字相乘法用于对型
6、多项式的分解因式。条件:(1),(2),即: ,则例12、分解因式(1) (2)解:(1)应用双十字相乘法: ,原式= (2)应用双十字相乘法: ,原式=练习12、分解因式(1) (2)七、换元法。例13、分解因式(1) (2)解:(1)设2005=,则原式= = =(2)型如的多项式,分解因式时可以把四个因式两两分组相乘。 原式=设,则原式= =练习13、分解因式(1)(2) (3)例14、分解因式(1)观察:此多项式的特点是关于的降幂排列,每一项的次数依次少1,并且系数成“轴对称”。这种多项式属于“等距离多项式”。方法:提中间项的字母和它的次数,保留系数,然后再用换元法。解:原式=设,则原
7、式= = = = (2)解:原式= 设,则 原式= =练习14、(1)(2)八、添项、拆项、配方法。 例15、分解因式(1) 解法1拆项。 解法2添项。原式= 原式= = = = = = = =(2)解:原式=练习15、分解因式(1) (2)(3) (4)(5) (6)九、待定系数法。例16、分解因式分析:原式的前3项可以分为,则原多项式必定可分为解:设=对比左右两边相同项的系数可得,解得原式=例17、(1)当为何值时,多项式能分解因式,并分解此多项式。 (2)如果有两个因式为和,求的值。(1)分析:前两项可以分解为,故此多项式分解的形式必为解:设= 则=比较对应的系数可得:,解得:或当时,原多项式可以分解;当时,原式=;当时,原式=(2)分析:是一个三次式,所以它应该分成三个一次式相乘,因此第三个因式必为形如的一次二项式。解:设= 则=,解得,=21练习17、(1)分解因式(2)分解因式(3)已知:能分解成两个一次因式之积,求常数并且分解因式。(4)为何值时,能分解成两个一次因式的乘积,并分解此多项式。7