1、2021年全国普通高等学校招生统一考试 全国甲卷文科数学注意事项:1.答卷前,考生务必将自己的姓名准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把题卡上对应题目的答案标号涂黑.如需改动,用皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,则( )A. B. C. D. 2. 为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:
2、根据此频率分布直方图,下面结论中不正确的是( )A. 该地农户家庭年收入低于4.5万元的农户比率估计为6%B. 该地农户家庭年收入不低于10.5万元的农户比率估计为10%C. 估计该地农户家庭年收入的平均值不超过6.5万元D. 估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间3. 已知,则( )A. B. C. D. 4. 下列函数中是增函数的为( )A. B. C. D. 5. 点到双曲线的一条渐近线的距离为( )A. B. C. D. 6. 青少年视力是社会普遍关注的问题,视力情况可借助视力表测量通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录表的
3、数据V的满足已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为( )()A. 1.5B. 1.2C. 0.8D. 0.67. 在一个正方体中,过顶点A的三条棱的中点分别为E,F,G该正方体截去三棱锥后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是( )A. B. C. D. 8. 在中,已知,则( )A. 1B. C. D. 39. 记为等比数列的前n项和.若,则( )A. 7B. 8C. 9D. 1010. 将3个1和2个0随机排成一行,则2个0不相邻的概率为( )A. 0.3B. 0.5C. 0.6D. 0.811. 若,则( )A. B. C. D. 12.
4、 设是定义域为R的奇函数,且.若,则( )A. B. C. D. 二填空题:本题共4小题,每小题5分,共20分.13. 若向量满足,则_.14. 已知一个圆锥的底面半径为6,其体积为则该圆锥的侧面积为_.15. 已知函数的部分图像如图所示,则_.16. 已知为椭圆C:的两个焦点,P,Q为C上关于坐标原点对称的两点,且,则四边形的面积为_三解答题:共70分.解答应写出交字说明证明过程程或演算步骤,第1721题为必考题,每个试题考生都必须作答.第2223题为选考题,考生根据要求作答.(一)必考题:共60分.17. 甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量
5、,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品二级品合计甲机床15050200乙机床12080200合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:0.0500.0100.001k3.8416.63510.82818. 记为数列的前n项和,已知,且数列是等差数列,证明:是等差数列.19. 已知直三棱柱中,侧面为正方形,E,F分别为和的中点,.(1)求三棱锥的体积;(2)已知D为棱上的点,证明:.20. 设函数,其中.(1)讨论的单调性;(2)若的图像与轴没有公共点,求
6、a的取值范围.21. 抛物线C的顶点为坐标原点O焦点在x轴上,直线l:交C于P,Q两点,且已知点,且与l相切(1)求C,的方程;(2)设是C上的三个点,直线,均与相切判断直线与的位置关系,并说明理由 (二)选考题:共10分.请考生在第2223题中任选一题作答.如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22. 在直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为(1)将C的极坐标方程化为直角坐标方程;(2)设点A的直角坐标为,M为C上的动点,点P满足,写出的轨迹的参数方程,并判断C与是否有公共点 选修4-5:不等式选讲23. 已知函数(1)画出和
7、图像;(2)若,求a的取值范围参考答案1.答案:B解析:2.答案:C解析:本题主要考查用样本估计总体.A项,由图得该地农户家庭年收入低于4.5万元的农户频率为.故A项正确.B项,由图得该地农户家庭年收入不低于10.5万元的农户频率为.故B项正确.C项,该地农户家庭年收入的平均值为万元,.故C项不正确.D项,由图得该地农户家庭年收入介于4.5万元至8.5万元之间的农户频率为.故D项正确.因为是选择不正确的一项,故本题正确答案为C.3.答案:B解析:本题主要考查复数的四则运算.因为,所以.故本题正确答案为B.4.答案:D解析:5.答案:A解析:6.答案:C解析:本题主要考查对数与对数函数.因为某同
8、学视力的五分记录法的数据为4.9,所以中令.则,所以,所以.故本题正确答案为C.7.答案:D解析:本题主要考查空间几何体.根据题意,所得多面体如图所示,故侧视图应为D选项所示的图形.故本题正确答案为D.8.答案:D解析:9.答案:A解析:10.答案:C解析:11.答案:A解析:12.答案:B解析:13.答案:解析:14.答案:解析:15.答案:解析:16.答案:8解析:本题主要考查圆锥曲线.如图所示,根据题意得,所以四边形为平行四边形.因为椭圆,所以,因为,所以平行四边形为矩形.设,所以,所以,所以.故本题正确答案为8.17.答案:(1)甲机床生产一级品的频率为,乙机床生产一级品的频率为.(2
9、)由列联表求得,则有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异.解析:18.答案:由是等差数列,得即的公差为当,当时,是等差数列解析:19.答案:(1) 直三棱柱,面ABC.,.正方形,.,面,.在中,E为AC中点,.F是中点,.(2)连,则,.由(1)在中,E是AC中点,.面面ABC,面面,面,面BEF,面面,.解析:20.答案:(1)令,则,令,则的增区间为,减区间为(2)由(1)知在上的极小值为,也是最小值.与x轴没有公共点,当且仅当.解析:21.答案:(1)设抛物线C的方程为,令,则(同理),又因为,根据对称性可知直线OP斜率为1,所以,解得,所以抛物线C的方程为.因为圆
10、M与直线l相切,所以圆M的半径即为圆心点M到直线l的距离为1,因此圆M的方程为:.(2)设,若,此时过作圆M的两条切线分别为直线l和直线,其中直线与抛物线C只有一个交点,不符合题意,因此.因为,所以直线的方程为:,整理可得:,同理可得,直线的方程为:,直线的方程为:,由题意得,点M到直线的距离,整理可得,同理有,根据韦达定理有:,此时点M到直线的距离.因此直线与圆M相切.解析:22.答案:(1)由得,即,整理得.(2)设P的坐标为,则,因为,所以,所以,因为M为C上的动点,所以,化简得,即P点的轨迹方程为,化成参数方程为,圆心,因为,所以C与没有公共点.解析:23.答案:(1),如图所示.(2)由(1)得,函数的图象即将函数的图象向左或向右平移个单位,当时,即将函数的图象向右平移得到的图象,此时函数的图象始终有部分图象位于函数的图象下方,无法满,则要满足,需,当函数的图象过点时,解得或,根据图象可得若,则,即.解析: