1、学习-好资料导数及其应用单元测试题(理科)(满分150分 时间:120分钟 )一、 选择题(本大题共8小题,共40分,只有一个答案正确)1函数的导数是( )(A) (B) (C) (D) 2函数的一个单调递增区间是( )(A) (B) (C) (D) 3已知对任意实数,有,且时,则时( )ABCD4( )(A) (B) (C) (D)5曲线在点处的切线与坐标轴所围三角形的面积为( )6设是函数的导函数,将和的图象画在同一个直角坐标系中,不可能正确的是( )7已知二次函数的导数为,对于任意实数都有,则的最小值为( )A B C D8设在内单调递增,则是的()充分不必要条件必要不充分条件充分必要条
2、件既不充分也不必要条件二填空题(本大题共6小题,共30分)9用长为18 cm的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,则该长方体的长、宽、高各为 时,其体积最大.10将抛物线和直线围成的图形绕轴旋转一周得到的几何体的体积等于 11已知函数在区间上的最大值与最小值分别为,则12对正整数n,设曲线在x2处的切线与y轴交点的纵坐标为,则数列的前n项和的公式是 13点P在曲线上移动,设在点P处的切线的倾斜角为为,则的取值范围是 14已知函数(1)若函数在总是单调函数,则的取值范围是 . (2)若函数在上总是单调函数,则的取值范围 .(3)若函数在区间(-3,1)上单调递减,则实数
3、的取值范围是 .三解答题(本大题共6小题,共12+12+14+14+14+14=80分)15设函数(1)证明:的导数;(2)若对所有都有,求的取值范围16设函数分别在处取得极小值、极大值.平面上点的坐标分别为、,该平面上动点满足,点是点关于直线的对称点,.求(1)求点的坐标; (2)求动点的轨迹方程. 17已知函数(x0)在x = 1处取得极值-3-c,其中a,b,c为常数。(1)试确定a,b的值;(2)讨论函数f(x)的单调区间;(3)若对任意x0,不等式恒成立,求c的取值范围。18已知(1)当时,求函数的单调区间。(2)当时,讨论函数的单调增区间。(3)是否存在负实数,使,函数有最小值3?
4、19已知函数(1)求曲线在点处的切线方程;(2)若过点可作曲线的三条切线,求实数的取值范围.20已知函数,其中(1)若是函数的极值点,求实数的值;(2)若对任意的(为自然对数的底数)都有成立,求实数的取值范围理科测试解答一、选择题1;或(理科要求:复合函数求导)2, 选(A) 或3.(B)数形结合4(D)5(D)6(D)7(C)8(B)二、填空题92cm,1cm,1.5cm ; 设长方体的宽为x(m),则长为2x(m),高为.故长方体的体积为从而令V(x)0,解得x=0(舍去)或x=1,因此x=1.当0x1时,V(x)0;当1x时,V(x)0,故在x=1处V(x)取得极大值,并且这个极大值就是
5、V(x)的最大值。从而最大体积VV(x)912-613(m3),此时长方体的长为2 m,高为1.5 m.10. (图略)113212,令x=0,求出切线与y轴交点的纵坐标为,所以,则数列的前n项和13.14. (1)三、解答题15解:(1)的导数由于,故(当且仅当时,等号成立)(2)令,则,()若,当时,故在上为增函数,所以,时,即()若,方程的正根为,此时,若,则,故在该区间为减函数所以,时,即,与题设相矛盾综上,满足条件的的取值范围是16解:(1)由题意知,因此,从而又对求导得由题意,因此,解得(2)由(I)知(),令,解得当时,此时为减函数;当时,此时为增函数因此的单调递减区间为,而的单
6、调递增区间为(3)由(II)知,在处取得极小值,此极小值也是最小值,要使()恒成立,只需即,从而,解得或所以的取值范围为17解: (1)令解得当时, 当时, ,当时,所以,函数在处取得极小值,在取得极大值,故,所以, 点A、B的坐标为.(2) 设,所以,又PQ的中点在上,所以消去得.另法:点P的轨迹方程为其轨迹为以(0,2)为圆心,半径为3的圆;设点(0,2)关于y=2(x-4)的对称点为(a,b),则点Q的轨迹为以(a,b),为圆心,半径为3的圆,由,得a=8,b=-218(1)或递减; 递增; (2)1、当递增;2、当递增;3、当或递增; 当递增;当或递增;(3)因由分两类(依据:单调性,
7、极小值点是否在区间-1,0上是分类“契机”:1、当 递增,解得2、当由单调性知:,化简得:,解得不合要求;综上,为所求。19解(1) 2分曲线在处的切线方程为,即;4分(2)过点向曲线作切线,设切点为则则切线方程为6分整理得过点可作曲线的三条切线方程(*)有三个不同实数根.记令或1. 10分则的变化情况如下表极大极小当有极大值有极小值. 12分由的简图知,当且仅当即时,体现市民生活质量状况的指标-恩格尔系数,上海也从1995年的53.4%下降到了2003年的37.2%,虽然与恩格尔系数多在20%以下的发达国家相比仍有差距,但按照联合国粮农组织的划分,表明上海消费已开始进入富裕状态(联合国粮农组
8、织曾依据恩格尔系数,将恩格尔系数在40%-50%定为小康水平的消费,20%-40%定为富裕状态的消费)。函数有三个不同零点,过点可作三条不同切线.所以若过点可作曲线的三条不同切线,的范围是.14分上述所示的上海经济发展的数据说明:人们收入水平的增加,生活水平的提高,给上海的饰品业带来前所未有的发展空间,为造就了一个消费额巨大的饰品时尚市场提供了经济基础。使大学生对DIY手工艺品的时尚性消费,新潮性消费,体验性消费成为可能。20(1)解法1:,其定义域为, 9、如果你亲戚朋友送你一件DIY手工艺制品你是否会喜欢? 是函数的极值点,即 , 经检验当时,是函数的极值点, 现在是个飞速发展的时代,与时
9、俱进的大学生当然也不会闲着,在装扮上也不俱一格,那么对作为必备道具的饰品多样性的要求也就可想而知了。解法2:,其定义域为, 创业首先要有“风险意识”,要能承受住风险和失败。还要有责任感,要对公司、员工、投资者负责。务实精神也必不可少,必须踏实做事;令,即,整理,得因此不难看出,自制饰品在校园里也大有市场所在。对于那些走在流行前端的女生来说,捕捉新事物便捕捉到了时尚与个性。,(2)物品的独一无二的两个实根(舍去),当变化时,的变化情况如下表:可是创业不是一朝一夕的事,在创业过程中会遇到很多令人难以想象的疑难杂症,对我们这些80年代出生的温室小花朵来说,更是难上加难。动漫书籍 化妆品 其他(三)大学生购买消费DIY手工艺品的特点分析0极小值依题意,即, (2)解:对任意的都有成立等价于对任意的都有 当1,时,函数在上是增函数 ,且,当且1,时,函数在1,上是增函数,.由,得,又,不合题意 当1时,若1,则,若,则函数在上是减函数,在上是增函数.由,得,又1, 当且1,时,函数在上是减函数.由,得,又,综上所述,的取值范围为 更多精品文档