1、2017-2018学年浙江省宁波市鄞州区七年级(上)期末数学试卷一、选择题(本大题共10小题,每小题2分,共20分)1中国人很早开始使用负数,中国古代数学著作九章算术的“方程”一章,在世界数学史上首次正式引入负数如果收入100元记作+100元那么80元表示()A支出20元B收入20元C支出80元D收入80元2人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为()A3107B30106C0.3107D0.31083在下列数,0.,1.311311131(每两个3之间多一个1)中,无理数的个数有()A1个B2个C3个D
2、4个4下列说法中,正确的是()A0是单项式B单项式x2y的次数是2C多项式ab+3是一次二项式D单项式x2y的系数是5下列有关叙述错误的是()A是正数B是3的平方根CD是分数6下列等式中正确的是()A(ab)=baB(a+b)=a+bC2(a+1)=2a+1D(3x)=3+x7如图,将一副三角板的直角顶点重合放置于A处(两块三角板可以在同一平面内自由转动),则下列结论一定成立的是()ABADEACBDACBAE=45CBAE+DAC=180DDACBAE8小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x元;超过5吨,超过部分每吨加收2元,小明家今年5月份用水9吨,共交水费为
3、44元,根据题意列出关于x的方程正确的是()A5x+4(x+2)=44B5x+4(x2)=44C9(x+2)=44D9(x+2)42=449如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A垂线段最短B经过一点有无数条直线C经过两点,有且仅有一条直线D两点之间,线段最短10我们规定:a*b=,则下列等式中对于任意实数a、b、c都成立的是()a+(b*c)=(a+b)*(a+c) a*(b+c)=(a+b)*ca*(b+c)=(a*b)+(a*c) (a*b)+c=+(b*2c)ABCD二、填空题(本小题共10小题,每
4、小题3分,共30分)118的立方根是12绝对值小于2的整数有个137030的余角为14已知25a2mb和7a4b3n是同类项,则2mn的值是15关于x的方程3x2k=3的解是1,则k的值是16已知线段AB=6cm,在直线AB上画线段AC=2cm,则BC的长是cm17一个正数的两个平方根是a+3和2a,则a的值是18在如图的数轴上,点B与点C到点A的距离相等,A、B两点对应的实数分别是1和,则点C对应的实数是19如图,OA的方向是北偏东15,OB的方向是北偏西40,若AOC=AOB且AOC,AOB在OA的异侧,则OC的方向是20有这样一组数据a1,a2,a3,an满足以下规律:a1=,a2=,a
5、3=,an=(n2且n为正整数),则a2016的值为三、解答题(本题共7小题,50分70分)21计算:(1)62()33(2)+|2|+(1)201722解方程(1)5x+3(2x)=8 (2)=123先化简,再求值:(1)2(2x3y)(3x+2y+1),其中x=2,y=0.5;(2)2(a2bab)3(a2bab),其中a,b满足(a+)2+|b3|=024如图,直线AB,CD相交于点O,OECD,OF平分BOD(1)图中除直角外,请写出一对相等的角:(写出符合的一对即可);(2)若AOE=28,求BOD和COF的度数25阅读理解并解答:为了求1+2+22+23+24+22013的值可令S
6、=1+2+22+23+24+22013,则2S=2+22+23+24+25+22013+22014因此2SS=(2+22+23+22013+22014)(1+2+22+23+22013)=220141所以:S=220141即1+2+22+23+24+22013=220141请依照此法,求:1+5+52+53+54+52016的值26某酒店客房部有三人间、双人间客房,收费标准如表:普通(元/间/天)豪华(元/间/天)三人间150300双人间140400为吸引游客,实行团体入住五折优惠措施现有一个100人的旅游团优惠期间到该酒店入住,住了一些三人普通间和双人普通间客房若每间客房正好住满,且一天共花
7、去住宿费3020元,则旅游团住了三人普通间和双人普通间客房各多少间?27(1)图(1)是正方体木块,把它切去一块,可能得到形如图(2),(3),(4),(5)的木块我们知道,图(1)的正方体木块有8个顶点,12条棱,6个面,请你将图(2),(3),(4),(5)中木块的顶点数,棱数,面数填入表:图顶点数棱数面数(1)8126(2)(3)(4)(5)(2)观察表,请你归纳上述各种木块的顶点数,棱数,面数之间的数量关系,这种数量关系是:(3)图是用虚线画出的正方体木块,请你想象一种与图不同的切法,把切去一块后得到的那一块的每条棱都改画成实线,则该木块的顶点数为,棱数为,面数为这与你(2)题中所归纳
8、的关系是否相符?2017-2018学年浙江省宁波市鄞州区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分)1中国人很早开始使用负数,中国古代数学著作九章算术的“方程”一章,在世界数学史上首次正式引入负数如果收入100元记作+100元那么80元表示()A支出20元B收入20元C支出80元D收入80元【考点】11:正数和负数【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示【解答】解:根据题意,收入100元记作+100元,则80表示支出80元故选:C2人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体也长达300000
9、00个核苷酸,30000000用科学记数法表示为()A3107B30106C0.3107D0.3108【考点】1I:科学记数法表示较大的数【分析】先确定出a和n的值,然后再用科学计数法的性质表示即可【解答】解:30000000=3107故选:A3在下列数,0.,1.311311131(每两个3之间多一个1)中,无理数的个数有()A1个B2个C3个D4个【考点】26:无理数【分析】无理数包括三方面的数:开方开不尽的根式:如,含的,如2,一些有规律的数,根据以上内容进行判断即可【解答】解:无理数有,1.311311131(每两个3之间多一个1),共3个,故选C4下列说法中,正确的是()A0是单项式
10、B单项式x2y的次数是2C多项式ab+3是一次二项式D单项式x2y的系数是【考点】43:多项式;42:单项式【分析】直接利用单项式的定义以及单项式的次数以及系数的定义和多项式的次数与项数确定方法分析得出答案【解答】解:A、0是单项式,正确,符合题意;B、单项式x2y的次数是3,故原式错误,不合题意;C、多项式ab+3是二次二项式,故原式错误,不合题意;D、单项式x2y的系数是,故原式错误,不合题意;故选:A5下列有关叙述错误的是()A是正数B是3的平方根CD是分数【考点】27:实数【分析】根据正数,可判断A,根据开方运算,可判断B,根据实数的大小比较,可判断C,根据分数的意义,可判断D【解答】
11、解;A、,故A正确;B、3的平方根是,故B正确;C、1,故C正确;D、是无理数,故D错误;故选:D6下列等式中正确的是()A(ab)=baB(a+b)=a+bC2(a+1)=2a+1D(3x)=3+x【考点】36:去括号与添括号【分析】根据去括号的定义判断即可【解答】解:A、(ab)=ba,正确;B、(a+b)=ab,错误;C、2(a+1)=2a+2,错误;D、(3x)=3+x,错误;故选A7如图,将一副三角板的直角顶点重合放置于A处(两块三角板可以在同一平面内自由转动),则下列结论一定成立的是()ABADEACBDACBAE=45CBAE+DAC=180DDACBAE【考点】IL:余角和补角
12、【分析】根据余角的定义、结合图形计算即可【解答】解:是直角三角板,BAC=DAE=90,BACBAE=DAEBAE,即BAD=EAC,不成立;DACBAE的值不固定,不成立;是直角三角板,BAC=DAE=90,BAD+BAE+BAE+EAC=180,即BAE+DAC=180,成立;DAC与BAE的大小不确定,故选:C8小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x元;超过5吨,超过部分每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x的方程正确的是()A5x+4(x+2)=44B5x+4(x2)=44C9(x+2)=44D9(x+2)42=44【
13、考点】89:由实际问题抽象出一元一次方程【分析】根据题意可以列出相应的方程,从而可以解答本题【解答】解:由题意可得,5x+(95)(x+2)=5x+4(x+2)=44,故选A9如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A垂线段最短B经过一点有无数条直线C经过两点,有且仅有一条直线D两点之间,线段最短【考点】IC:线段的性质:两点之间线段最短【分析】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案【解答】解:用剪刀沿直线将一
14、片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,线段AB的长小于点A绕点C到B的长度,能正确解释这一现象的数学知识是两点之间,线段最短,故选D10我们规定:a*b=,则下列等式中对于任意实数a、b、c都成立的是()a+(b*c)=(a+b)*(a+c) a*(b+c)=(a+b)*ca*(b+c)=(a*b)+(a*c) (a*b)+c=+(b*2c)ABCD【考点】2C:实数的运算【分析】根据*的含义,以及实数的运算方法,判断出对于任意实数a、b、c都成立的是哪个等式即可【解答】解:a+(b*c)=a+,(a+b)*(a+c)=a+,选项符合题意;a*(b+c)=,(a+b)*
15、c=,选项符合题意;a*(b+c)=,(a*b)+(a*c)=+=a+,选项不符合题意;(a*b)+c=+c, +(b*2c)=+=+c,选项符合题意,等式中对于任意实数a、b、c都成立的是:故选:B二、填空题(本小题共10小题,每小题3分,共30分)118的立方根是2【考点】24:立方根【分析】利用立方根的定义即可求解【解答】解:(2)3=8,8的立方根是2故答案为:212绝对值小于2的整数有3个【考点】15:绝对值【分析】运用绝对值定义求出小于2的整数即可【解答】解:绝对值小于2的整数有1,0共3个故答案为:3137030的余角为19.5【考点】IL:余角和补角;II:度分秒的换算【分析】
16、利用90减去7030,然后再把单位化成度即可【解答】解:907030=1930=19.5,故答案为:19.514已知25a2mb和7a4b3n是同类项,则2mn的值是2【考点】34:同类项【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可【解答】解:根据题意得:2m=4,3n=1,解得:m=2,n=2,则2mn=42=2故答案是:215关于x的方程3x2k=3的解是1,则k的值是3【考点】82:方程的解【分析】把x=1代入方程3x2k=3计算即可求出k的值【解答】解:把x=1代入方程得:32k=3,解得:k=3,故答案为:316已知线段A
17、B=6cm,在直线AB上画线段AC=2cm,则BC的长是4或8cm【考点】IE:比较线段的长短【分析】要求学生分情况讨论A,B,C三点的位置关系,考查学生对图形的理解与运用【解答】解:线段AB=6cm,AC=2cm,若A、B在C的同侧,则BC的长是62=4cm;若A、B在C的两侧,则BC的是6+2=8cm;BC的长是8cm或4cm故答案为4或817一个正数的两个平方根是a+3和2a,则a的值是3【考点】21:平方根【分析】由于某数的两个平方根应该互为相反数,由此即可列方程解出a【解答】解:一个正数的两个平方根是a+3和2a,a+3+(2a)=0,解得a=3故答案为:318在如图的数轴上,点B与
18、点C到点A的距离相等,A、B两点对应的实数分别是1和,则点C对应的实数是2+【考点】29:实数与数轴【分析】设出点C所表示的数为x,根据点B、C到点A的距离相等列出方程,即可求出x【解答】解:设点C所表示的数为x,点B与点C到点A的距离相等,AC=AB,即x1=1+,解得:x=2+故答案为:2+19如图,OA的方向是北偏东15,OB的方向是北偏西40,若AOC=AOB且AOC,AOB在OA的异侧,则OC的方向是北偏东70【考点】IH:方向角【分析】根据角的和差,方向角的表示方法,可得答案【解答】解:如图,BOD=40,AOD=15,AOC=AOB=AOD+BOD=55,COD=AOC+AOD=
19、15+55=70,故答案为:北偏东7020有这样一组数据a1,a2,a3,an满足以下规律:a1=,a2=,a3=,an=(n2且n为正整数),则a2016的值为1【考点】37:规律型:数字的变化类【分析】根据题意可以先计算出这组数据中的前几个数,观察其中的变化规律,即可解答本题【解答】解:a1=,a2=,a3=,a4=,20163=672,a2016=1,故答案为:1三、解答题(本题共7小题,50分70分)21计算:(1)62()33(2)+|2|+(1)2017【考点】2C:实数的运算【分析】(1)根据有理数的乘方、乘除、加减进行计算即可;(2)根据算术平方根、绝对值、立方根进行计算即可【
20、解答】解:(1)原式=36()27=241827=21;(2)原式=2+231=022解方程(1)5x+3(2x)=8 (2)=1【考点】86:解一元一次方程【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解【解答】解:(1)去括号得:5x+63x=8,移项合并得:2x=2,解得:x=1;(2)去分母得:5x158x2=10,移项合并得:3x=27,解得:x=923先化简,再求值:(1)2(2x3y)(3x+2y+1),其中x=2,y=0.5;(2)2(a2bab)3(a2bab),其中a,b满足(a+)2+|b3|=
21、0【考点】45:整式的加减化简求值;16:非负数的性质:绝对值;1F:非负数的性质:偶次方【分析】(1)先去括号再合并同类项,把x,y的值代入计算即可;(2)先根据非负数的性质得出a,b的值,再去括号再合并同类项,把a,b的值代入计算即可【解答】解:(1)原式=4x6y3x2y1=x8y1,当x=2,y=0.5时,原式=2+41=5;(2)(a+)2+|b3|=0,a=,b=3,原式=2a2b2ab3a2b+2ab=a2b,当a=,b=3,原式=a2b=()23=624如图,直线AB,CD相交于点O,OECD,OF平分BOD(1)图中除直角外,请写出一对相等的角:DOB=AOC,AOD=BOC
22、(写出符合的一对即可);(2)若AOE=28,求BOD和COF的度数【考点】J3:垂线;IJ:角平分线的定义;J2:对顶角、邻补角【分析】(1)根据对顶角相等可得DOB=AOC,AOD=BOC;(2)根据垂直定义可得COE=90,进而可得AOC的度数,再由对顶角相等可得BOD的度数,由角平分线的性质可得DOF的度数,再根据邻补角互补可得COF的度数【解答】解:(1)DOB=AOC,AOD=BOC;故答案为:DOB=AOC,AOD=BOC;(2)OECD,COE=90,AOE=28,AOC=62,OF平分BOD,DOF=BOD=31,COF=18031=14925阅读理解并解答:为了求1+2+2
23、2+23+24+22013的值可令S=1+2+22+23+24+22013,则2S=2+22+23+24+25+22013+22014因此2SS=(2+22+23+22013+22014)(1+2+22+23+22013)=220141所以:S=220141即1+2+22+23+24+22013=220141请依照此法,求:1+5+52+53+54+52016的值【考点】37:规律型:数字的变化类;1G:有理数的混合运算【分析】根据题目信息,设S=1+5+52+53+52016,求出5S,然后相减计算即可得解【解答】解:设S=1+5+52+53+52016,则5S=5+52+53+54+520
24、17,两式相减得:4S=520171,则S=1+5+52+53+54+52016的值为26某酒店客房部有三人间、双人间客房,收费标准如表:普通(元/间/天)豪华(元/间/天)三人间150300双人间140400为吸引游客,实行团体入住五折优惠措施现有一个100人的旅游团优惠期间到该酒店入住,住了一些三人普通间和双人普通间客房若每间客房正好住满,且一天共花去住宿费3020元,则旅游团住了三人普通间和双人普通间客房各多少间?【考点】8A:一元一次方程的应用【分析】设三人普通间住了x间,则双人普通间住了间,根据总价=单价数量结合三人普通间及双人普通间客房的费用,即可得出关于x的一元一次方程,解之即可
25、得出结论【解答】解:设三人普通间住了x间,则双人普通间住了间,根据题意得:1500.5x+1400.5=3020,解得:x=16,=26答:旅游团住了三人普通间客房16间,双人普通间客房26间27(1)图(1)是正方体木块,把它切去一块,可能得到形如图(2),(3),(4),(5)的木块我们知道,图(1)的正方体木块有8个顶点,12条棱,6个面,请你将图(2),(3),(4),(5)中木块的顶点数,棱数,面数填入表:图顶点数棱数面数(1)8126(2)695(3)8126(4)8137(5)10157(2)观察表,请你归纳上述各种木块的顶点数,棱数,面数之间的数量关系,这种数量关系是:顶点数+
26、面数2=棱数(3)图是用虚线画出的正方体木块,请你想象一种与图不同的切法,把切去一块后得到的那一块的每条棱都改画成实线,则该木块的顶点数为8,棱数为12,面数为6这与你(2)题中所归纳的关系是否相符?【考点】I9:截一个几何体;I3:欧拉公式【分析】根据欧拉公式,可得答案【解答】解:观察表,请你归纳上述各种木块的顶点数,棱数,面数之间的数量关系,这种数量关系是:顶点数+面数2=棱数(3)图是用虚线画出的正方体木块,请你想象一种与图不同的切法,把切去一块后得到的那一块的每条棱都改画成实线,则该木块的顶点数为 8,棱数为 12,面数为 6这与你(2)题中所归纳的关系是相符故答案为:6,9,5;8,12,6;8,13,7;10,15,7;顶点数+面数2=棱数;12,62018年5月23日第20页(共20页)