1、绝密启用前海南省2019年高考数学文科试卷本试卷共23题,共150分,共4页。考试结束后,将本试卷和答题卡一并交回。注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四
2、个选项中,只有一项是符合题目要求的。1(5分)已知集合Ax|x1,Bx|x2,则AB()A(1,+)B(,2)C(1,2)D2(5分)设zi(2+i),则()A1+2iB1+2iC12iD12i3(5分)已知向量(2,3),(3,2),则|()AB2C5D504(5分)生物实验室有5只兔子,其中只有3只测量过某项指标若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()ABCD5(5分)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测甲:我的成绩比乙高乙:丙的成绩比我和甲的都高丙:我的成绩比乙高成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()
3、A甲、乙、丙B乙、甲、丙C丙、乙、甲D甲、丙、乙6(5分)设f(x)为奇函数,且当x0时,f(x)ex1,则当x0时,f(x)()Aex1Bex+1Cex1Dex+17(5分)设,为两个平面,则的充要条件是()A内有无数条直线与平行B内有两条相交直线与平行C,平行于同一条直线D,垂直于同一平面8(5分)若x1,x2是函数f(x)sinx(0)两个相邻的极值点,则()A2BC1D9(5分)若抛物线y22px(p0)的焦点是椭圆+1的一个焦点,则p()A2B3C4D810(5分)曲线y2sinx+cosx在点(,1)处的切线方程为()Axy10B2xy210C2x+y2+10Dx+y+1011(5
4、分)已知(0,),2sin2cos2+1,则sin()ABCD12(5分)设F为双曲线C:1(a0,b0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2a2交于P,Q两点若|PQ|OF|,则C的离心率为()ABC2D二、填空题:本题共4小题,每小题5分,共20分。13(5分)若变量x,y满足约束条件则z3xy的最大值是 14(5分)我国高铁发展迅速,技术先进经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为 15(5分)ABC的内角A,B,C的对边分别为a,b,
5、c已知bsinA+acosB0,则B 16(5分)中国有悠久的金石文化,印信是金石文化的代表之一印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1)半正多面体是由两种或两种以上的正多边形围成的多面体半正多面体体现了数学的对称美图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1则该半正多面体共有 个面,其棱长为 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17(12分)如图,长方体A
6、BCDA1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BEEC1(1)证明:BE平面EB1C1;(2)若AEA1E,AB3,求四棱锥EBB1C1C的体积18(12分)已知an是各项均为正数的等比数列,a12,a32a2+16(1)求an的通项公式;(2)设bnlog2an,求数列bn的前n项和19(12分)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表y的分组0.20,0)0,0.20)0.20,0.40)0.40,0.60)0.60,0.80)企业数22453147(1)分别估计这类企业中产值增
7、长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表)(精确到0.01)附:8.60220(12分)已知F1,F2是椭圆C:+1(ab0)的两个焦点,P为C上的点,O为坐标原点(1)若POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1PF2,且F1PF2的面积等于16,求b的值和a的取值范围21(12分)已知函数f(x)(x1)lnxx1证明:(1)f(x)存在唯一的极值点;(2)f(x)0有且仅有两个实根,且两个实根互为倒数(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果
8、多做,则按所做的第一题计分。选修4-4:坐标系与参数方程(10分)22(10分)在极坐标系中,O为极点,点M(0,0)(00)在曲线C:4sin上,直线l过点A(4,0)且与OM垂直,垂足为P(1)当0时,求0及l的极坐标方程;(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程选修4-5:不等式选讲(10分)23已知f(x)|xa|x+|x2|(xa)(1)当a1时,求不等式f(x)0的解集;(2)当x(,1)时,f(x)0,求a的取值范围海南省2019年高考数学文科试卷答案解析一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1
9、【分析】直接利用交集运算得答案【解答】解:由Ax|x1,Bx|x2,得ABx|x1x|x2(1,2)故选:C【点评】本题考查交集及其运算,是基础题2【分析】利用复数代数形式的乘除运算化简,再由共轭复数的概念得答案【解答】解:zi(2+i)1+2i,12i,故选:D【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题3【分析】利用向量的坐标减法运算求得的坐标,再由向量模的公式求解【解答】解:(2,3),(3,2),(2,3)(3,2)(1,1),|故选:A【点评】本题考查平面向量的坐标运算,考查向量模的求法,是基础题4【分析】本题根据组合的概念可知从这5只兔子中随机取出3只的所有
10、情况数为,恰有2只测量过该指标是从3只侧过的里面选2,从未测的选1,组合数为即可得出概率【解答】解:由题意,可知:根据组合的概念,可知:从这5只兔子中随机取出3只的所有情况数为,恰有2只测量过该指标的所有情况数为p故选:B【点评】本题主要考查组合的相关概念及应用以及简单的概率知识,本题属基础题5【分析】本题可从三人预测中互相关联的乙、丙两人的预测入手,因为只有一个人预测正确,而乙对则丙必对,丙对乙很有可能对,假设丙对乙错则会引起矛盾故只有一种情况就是甲预测正确乙、丙错误,从而得出结果【解答】解:由题意,可把三人的预测简写如下:甲:甲乙乙:丙乙且丙甲丙:丙乙只有一个人预测正确,分析三人的预测,可
11、知:乙、丙的预测不正确如果乙预测正确,则丙预测正确,不符合题意如果丙预测正确,假设甲、乙预测不正确,则有丙乙,乙甲,乙预测不正确,而丙乙正确,只有丙甲不正确,甲丙,这与丙乙,乙甲矛盾不符合题意只有甲预测正确,乙、丙预测不正确,甲乙,乙丙故选:A【点评】本题主要考查合情推理,因为只有一个人预测正确,所以本题关键是要找到互相关联的两个预测入手就可找出矛盾从而得出正确结果本题属基础题6【分析】设x0,则x0,代入已知函数解析式,结合函数奇偶性可得x0时的f(x)【解答】解:设x0,则x0,f(x)ex1,设f(x)为奇函数,f(x)ex1,即f(x)ex+1故选:D【点评】本题考查函数的解析式即常用
12、求法,考查函数奇偶性性质的应用,是基础题7【分析】充要条件的定义结合面面平行的判定定理可得结论【解答】解:对于A,内有无数条直线与平行,或;对于B,内有两条相交直线与平行,;对于C,平行于同一条直线,或;对于D,垂直于同一平面,或故选:B【点评】本题考查了充要条件的定义和面面平行的判定定理,考查了推理能力,属于基础题8【分析】x1,x2是f(x)两个相邻的极值点,则周期T2(),然后根据周期公式即可求出【解答】解:x1,x2是函数f(x)sinx(0)两个相邻的极值点,T2()2,故选:A【点评】本题考查了三角函数的图象与性质,关键是根据条件得出周期,属基础题9【分析】根据抛物线的性质以及椭圆
13、的性质列方程可解得【解答】解:由题意可得:3pp()2,解得p8故选:D【点评】本题考查了抛物线与椭圆的性质,属基础题10【分析】求出原函数的导函数,得到函数在x时的导数,再由直线方程点斜式得答案【解答】解:由y2sinx+cosx,得y2cosxsinx,y|x2cossin2,曲线y2sinx+cosx在点(,1)处的切线方程为y+12(x),即2x+y2+10故选:C【点评】本题考查利用导数研究过曲线上某点处的切线方程,熟记基本初等函数的导函数是关键,是基础题11【分析】由二倍角的三角函数公式化简已知可得4sincos2cos2,结合角的范围可求sin0,cos0,可得cos2sin,根
14、据同角三角函数基本关系式即可解得sin的值【解答】解:2sin2cos2+1,可得:4sincos2cos2,(0,),sin0,cos0,cos2sin,sin2+cos2sin2+(2sin)25sin21,解得:sin故选:B【点评】本题主要考查了二倍角的三角函数公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题12【分析】由题意画出图形,先求出PQ,再由|PQ|OF|列式求C的离心率【解答】解:如图,由题意,把x代入x2+y2a2,得PQ,再由|PQ|OF|,得,即2a2c2,解得e故选:A【点评】本题考查双曲线的简单性质,考查数形结合的解题思想方法,是
15、中档题二、填空题:本题共4小题,每小题5分,共20分。13【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案【解答】解:由约束条件作出可行域如图:化目标函数z3xy为y3xz,由图可知,当直线y3xz过A(3,0)时,直线在y轴上的截距最小,z有最大值为9故答案为:9【点评】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题14【分析】利用加权平均数公式直接求解【解答】解:经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,经停该站高铁列车所有车次
16、的平均正点率的估计值为:(100.97+200.98+100.99)0.98故答案为:0.98【点评】本题考查经停该站高铁列车所有车次的平均正点率的估计值的求法,考查加权平均数公式等基础知识,考查推理能力与计算能力,属于基础题15【分析】由正弦定理化简已知等式可得sinAsinB+sinAcosB0,由于sinA0,化简可得tanB1,结合范围B(0,),可求B的值为【解答】解:bsinA+acosB0,由正弦定理可得:sinAsinB+sinAcosB0,A(0,),sinA0,可得:sinB+cosB0,可得:tanB1,B(0,),B故答案为:【点评】本题主要考查了正弦定理,同角三角函数
17、基本关系式,特殊角的三角函数值在解三角形中的应用,考查了计算能力和转化思想,属于基础题16【分析】中间层是一个正八棱柱,有8个侧面,上层是有8+1,个面,下层也有8+1个面,故共有26个面;半正多面体的棱长为中间层正八棱柱的棱长加上两个棱长的cos45倍【解答】解:该半正多面体共有8+8+8+226个面,设其棱长为x,则x+x+x1,解得x1故答案为:26,1【点评】本题考查了球内接多面体,属中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17【分析】(1)由线面
18、垂直的性质可得B1C1BE,结合BEEC1利用线面垂直的判定定理可证明BE平面EB1C1;(2)由条件可得AEAB3,然后得到E到平面BB1C1C的距离d3,在求四棱锥的体积即可【解答】解:(1)证明:由长方体ABCDA1B1C1D1,可知B1C1平面ABB1A1,BE平面ABB1A1,B1C1BE,BEEC1,B1C1EC1C1,BE平面EB1C1;(2)由(1)知BEB190,由题设可知RtABERtA1B1E,AEBA1EB145,AEAB3,AA12AE6,在长方体ABCDA1B1C1D1中,AA1平面BB1C1C,EAA1,AB平面BB1C1C,E到平面BB1C1C的距离dAB3,四
19、棱锥EBB1C1C的体积V36318【点评】本题考查了线面垂直的判定定理和性质,考查了四棱锥体积的求法,属中档题18【分析】(1)设等比数列的公比,由已知列式求得公比,则通项公式可求;(2)把(1)中求得的an的通项公式代入bnlog2an,得到bn,说明数列bn是等差数列,再由等差数列的前n项和公式求解【解答】解:(1)设等比数列的公比为q,由a12,a32a2+16,得2q24q+16,即q22q80,解得q2(舍)或q4;(2)bnlog2an,b11,bn+1bn2(n+1)12n+12,数列bn是以1为首项,以2为公差的等差数列,则数列bn的前n项和【点评】本题考查等差数列与等比数列
20、的通项公式及前n项和,考查对数的运算性质,是基础题19【分析】(1)根据频数分布表计算即可;(2)根据平均值和标准差计算公式代入数据计算即可【解答】解:(1)根据产值增长率频数表得,所调查的100个企业中产值增长率不低于40%的企业为:0.2121%,产值负增长的企业频率为:0.022%,用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%;(2)企业产值增长率的平均数0.12+0.124+0.353+0.514+0.770.330%,产值增长率的方程s2(0.4)22+(0.2)224+0253+0.2214+0.4270.0296,产值
21、增长率的标准差s0.17,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%【点评】本题考查了样本数据的平均值和方程的求法,考查运算求解能力,属基础题20【分析】(1)根据POF2为等边三角形,可得在F1PF2中,F1PF290,在根据直角形和椭圆定义可得;(2)根据三个条件列三个方程,解方程组可得b4,根据x2(c2b2),所以c2b2,从而a2b2+c22b232,故a4,【解答】解:(1)连接PF1,由POF2为等边三角形可知在F1PF2中,F1PF290,|PF2|c,|PF1|c,于是2a|PF1|+|PF2|(+1)c,故曲线C的离心率e1(2)由题意可知,满足条件的点
22、P(x,y)存在当且仅当:|y|2c16,1,+1,即c|y|16,x2+y2c2,+1,由及a2b2+c2得y2,又由知y2,故b4,由得x2(c2b2),所以c2b2,从而a2b2+c22b232,故a4,当b4,a4时,存在满足条件的点P所以b4,a的取值范围为4,+)【点评】本题考查了双曲线的性质,属中档题21【分析】(1)推导出f(x)的定义域为(0,+),f(x)lnx,从而f(x)单调递增,进而存在唯一的x0(1,2),使得f(x0)0由此能证明f(x)存在唯一的极值点(2)由f(x0)f(1)2,f(e2)e230,得到f(x)0在(x0,+)内存在唯一的根xa,由ax01,得
23、,从而是f(x)0在(0,x0)的唯一根,由此能证明f(x)0有且仅有两个实根,且两个实根互为倒数【解答】证明:(1)函数f(x)(x1)lnxx1f(x)的定义域为(0,+),f(x)lnx,ylnx单调递增,y单调递减,f(x)单调递增,又f(1)10,f(2)ln20,存在唯一的x0(1,2),使得f(x0)0当xx0时,f(x)0,f(x)单调递减,当xx0时,f(x)0,f(x)单调递增,f(x)存在唯一的极值点(2)由(1)知f(x0)f(1)2,又f(e2)e230,f(x)0在(x0,+)内存在唯一的根xa,由ax01,得,f()()ln0,是f(x)0在(0,x0)的唯一根,
24、综上,f(x)0有且仅有两个实根,且两个实根互为倒数【点评】本题考查函数有唯一的极值点的证明,考查函数有且仅有两个实根,且两个实根互为倒数的证明,考查导数性质、函数的单调性、最值、极值等基础知识,考查化归与转化思想、函数与方程思想,考查运算求解能力,是中档题(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。选修4-4:坐标系与参数方程(10分)22【分析】(1)把0直接代入4sin即可求得0,在直线l上任取一点(,),利用三角形中点边角关系即可求得l的极坐标方程;(2)设P(,),在RtOAP中,根据边与角的关系得答案【解答】解:(1)当0时,在直线
25、l上任取一点(,),则有,故l的极坐标方程为有;(2)设P(,),则在RtOAP中,有4cos,P在线段OM上,故P点轨迹的极坐标方程为4cos,【点评】本题考查解得曲线的极坐标方程及其应用,画图能够起到事半功倍的作用,是基础题选修4-5:不等式选讲(10分)23【分析】(1)将a1代入得f(x)|x1|x+|x2|(x1),然后分x1和x1两种情况讨论f(x)0即可;(2)根据条件分a1和a1两种情况讨论即可【解答】解:(1)当a1时,f(x)|x1|x+|x2|(x1),f(x)0,当x1时,f(x)2(x1)20,恒成立,x1;当x1时,f(x)(x1)(x+|x2|)0恒成立,x;综上,不等式的解集为(,1);(2)当a1时,f(x)2(ax)(x1)0在x(,1)上恒成立;当a1时,x(a,1),f(x)2(xa)0,不满足题意,a的取值范围为:1,+)【点评】本题考查了绝对值不等式的解法,考查了分类讨论思想,属中档题第16页(共16页)