1、高质教学是我们追求的目标人教版六年级数学上册第六单元百分数知识点归纳一、百分数的意义和写法(一)、百分数的意义:表示一个数是另一个数的百分之几。百分数是指的两个数的比,因此也叫百分率或百分比。(二)、百分数和分数的主要联系与区别:联系:都可以表示两个量的倍比关系。区别:、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;分数既可以表示具体的数,又可以表示两个数的关系,表示具体数时可以带单位。、百分数的分子可以是整数,也可以是小数;分数的分子不能是小数,只能是除0以外的自然数。3、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示,读作百分之。二、百分数
2、和分数、小数的互化(一)百分数与小数的互化:1、小数化成百分数:把小数点向右移动两位(数位不够用0补足),同时在后面添上百分号。2. 百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分号。(二)百分数的和分数的互化1、百分数化成分数:先把百分数改写成分母是100的分数,能约分要约成最简分数。2、分数化成百分数: 用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。(建议用这种方法)(三)常见分数小数百分数之间的互化;三、用百分数解决问题(一)一般应用题1、常见的百分率的计算方法:
3、一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。2、 求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。例如:例如:男生有20人,女生有15人,女生人数占男生人数的百分之几。列式是:1520=15/20=753、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题,数量关系式和分数乘法解决问题中的关系式相同:(1)百分率前是“的”: 单位“1”的量百分率=百分率对应量(2百分率前是“多或少”的数量关系: 单位“1”的量(1百分率)=百分率对应量4、未知单位“1”的量(用除法),已知单
4、位“1”的百分之几是多少,求单位“1”。 方法与分数的方法相同。解法:(1)方程: 根据数量关系式设未知量为X,用方程解答。(2)算术(用除法): 百分率对应量对应百分率 = 单位“1”的量5、求一个数比另一个数多(少)百分之几的方法与分数的方法相同。只是结果要写为百分数形式。看百分率前有没有比多或比少的问题;百分率前是“多或少”的关系式: (比少):具体量 (1-百分率)= 单位“1”的量;例如:大米有50千克,比面粉树少50,面粉有多少千克。列式是:50(1-50)(比多):具体量 (1+百分率)= 单位“1”的量例如:工人做110个零件,比原计划多做了10,原计划做多少个?列式是:110
5、(1+10)6、求一个数比另一个数多百分之几的方法:方法与分数的方法相同。用两个数的相差量单位“1”的量 =百分之几即求一个数比另一个数多百分之几:用(大数小数) 另一个数(比那个数就除以那个数),结果写为百分数形式。甲比乙多几分之几的问题,方法A,(甲-乙)乙 (建议用) 方法B,甲乙-100例如:老师计划改40本作业,实际改了50本,实际比计划多改了百分之几?列式是:(5040)40=0.25=25求一个数比另一个数少几分之几:用(大数小数) 另一个数(比那个数就除以那个数),结果写为百分数形式。乙比甲少几分之几的问题,方法A,(甲-乙)甲(建议用) 方法B, 100-乙甲例如:张三家用了100度电,李四家用了90度电,李四家比张三家少用百分之几?(10090)100=0.1=10说明:多百分之几不等于少百分之几,因为单位一不同。7、 如果甲比乙多或少a,求乙比甲少或多百分之几,用a(1a)求价格先降a又上升a后的价格:1(1-a)(1+a)(假设原来的价格为“1”。求变化幅度(求降价后的价格是涨价后价格的百分之几)用1-降价后又上升的百分率。学习只是一种习惯,一种状态。