椭圆知识点及经典例题汇总(DOC 11页).doc

上传人(卖家):2023DOC 文档编号:5654720 上传时间:2023-04-29 格式:DOC 页数:12 大小:526.50KB
下载 相关 举报
椭圆知识点及经典例题汇总(DOC 11页).doc_第1页
第1页 / 共12页
椭圆知识点及经典例题汇总(DOC 11页).doc_第2页
第2页 / 共12页
椭圆知识点及经典例题汇总(DOC 11页).doc_第3页
第3页 / 共12页
椭圆知识点及经典例题汇总(DOC 11页).doc_第4页
第4页 / 共12页
椭圆知识点及经典例题汇总(DOC 11页).doc_第5页
第5页 / 共12页
点击查看更多>>
资源描述

1、椭圆知识点知识要点小结:知识点一:椭圆的定义平面内一个动点到两个定点、的距离之和等于常 ,这个动点的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.注意:若,则动点的轨迹为线段;若,则动点的轨迹无图形.知识点二:椭圆的标准方程1当焦点在轴上时,椭圆的标准方程:,其中2当焦点在轴上时,椭圆的标准方程:,其中; 3.椭圆的参数方程 注意:1只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;2在椭圆的两种标准方程中,都有和;3椭圆的焦点总在长轴上.当焦点在轴上时,椭圆的焦点坐标为,;当焦点在轴上时,椭圆的焦点坐标为,知识点三:椭圆的简单几何性质椭圆:

2、的简单几何性质(1)对称性:对于椭圆标准方程:说明:把换成、或把换成、或把、同时换成、原方程都不变,所以椭圆是以轴、轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。(2)范围:椭圆上所有的点都位于直线和所围成的矩形内,所以椭圆上点的坐标满足,。(3)顶点:椭圆的对称轴与椭圆的交点称为椭圆的顶点。椭圆与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为 , 线段,分别叫做椭圆的长轴和短轴,,。和分别叫做椭圆的长半轴长和短半轴长。(4)离心率: 椭圆的焦距与长轴长度的比叫做椭圆的离心率,用表示,记作。因为,所以的取值范围是。越接近1,则就越接近,从而越小,因此

3、椭圆越扁;反之,越接近于0,就越接近0,从而越接近于,这时椭圆就越接近于圆。 当且仅当时,这时两个焦点重合,图形变为圆,方程为。注意:椭圆的图像中线段的几何特征(如下图):(1);l ;(3);知识点四:椭圆第二定义 一动点到定点的距离和它到一条定直线的距离的比是一个内常数,那么这个点的轨迹叫做椭圆 其中定点叫做焦点,定直线叫做准线,常数就是离心率左准线 右准线知识点五:椭圆的焦半径公式:(左焦半径) (右焦半径) 其中是离心率 焦点在y轴上的椭圆的焦半径公式: ( 其中分别是椭圆的下上焦点)知识点六:直线与椭圆问题(韦达定理的运用)弦长公式:若直线与圆锥曲线相交与、两点,则 弦长 知识点七:

4、椭圆 与 的区别和联系标准方程 图形性质焦点,焦距 范围,对称性关于轴、轴和原点对称顶点,轴长长轴长=,短轴长= 离心率准线方程焦半径,注意:椭圆,的相同点:形状、大小都相同;参数间的关系都有和,;不同点:两种椭圆的位置不同;它们的焦点坐标也不相同。规律方法: 1如何确定椭圆的标准方程? 任何椭圆都有一个对称中心,两条对称轴。当且仅当椭圆的对称中心在坐标原点,对称轴是坐标轴,椭圆的方程才是标准方程形式。此时,椭圆焦点在坐标轴上。确定一个椭圆的标准方程需要三个条件:两个定形条件;一个定位条件焦点坐标,由焦点坐标的形式确定标准方程的类型。 2椭圆标准方程中的三个量的几何意义椭圆标准方程中,三个量的

5、大小与坐标系无关,是由椭圆本身的形状大小所确定的。分别表示椭圆的长半轴长、短半轴长和半焦距长,均为正数,且三个量的大小关系为:,且。可借助右图理解记忆: 显然:恰构成一个直角三角形的三条边,其中a是斜边,b、c为两条直角边。3如何由椭圆标准方程判断焦点位置椭圆的焦点总在长轴上,因此已知标准方程,判断焦点位置的方法是:看,的分母的大小,哪个分母大,焦点就在哪个坐标轴上。 4方程是表示椭圆的条件方程可化为,即,所以只有A、B、C同号,且AB时,方程表示椭圆。当时,椭圆的焦点在轴上;当时,椭圆的焦点在轴上。5求椭圆标准方程的常用方法: 待定系数法:由已知条件确定焦点的位置,从而确定椭圆方程的类型,设

6、出标准方程,再由条件确定方程中的参数的值。其主要步骤是“先定型,再定量”;定义法:由已知条件判断出动点的轨迹是什么图形,然后再根据定义确定方程。6共焦点的椭圆标准方程形式上的差异共焦点,则c相同。与椭圆共焦点的椭圆方程可设为,此类问题常用待定系数法求解。7判断曲线关于轴、轴、原点对称的依据: 若把曲线方程中的换成,方程不变,则曲线关于轴对称; 若把曲线方程中的换成,方程不变,则曲线关于轴对称; 若把曲线方程中的、同时换成、,方程不变,则曲线关于原点对称。8如何求解与焦点三角形PF1F2(P为椭圆上的点)有关的计算问题? 思路分析:与焦点三角形PF1F2有关的计算问题时,常考虑到用椭圆的定义及余

7、弦定理(或勾股定理)、三角形面积公式相结合的方法进行计算解题。将有关线段,有关角 ()结合起来,建立、之间的关系. 9如何计算椭圆的扁圆程度与离心率的关系? 长轴与短轴的长短关系决定椭圆形状的变化。离心率,因为,用表示为。显然:当越小时,越大,椭圆形状越扁;当越大,越小,椭圆形状越趋近于圆。经典例题:一、椭圆的定义例1、已知F1(-8,0),F2(8,0),动点P满足|PF1|+|PF2|=16,则点P的轨迹为( )A 圆 B 椭圆 C线段 D 直线例2、椭圆左右焦点为F1、F2,CD为过F1的弦,则CDF2的周长为_二、椭圆的标准方程例3、已知方程表示椭圆,则k的取值范围是( ) A -1k

8、0 C k0 D k1或k-1例4、已知方程+=1,表示焦点在y轴上的椭圆,则m的取值范围为 .例5、求满足以下条件的椭圆的标准方程(1)长轴长为10,短轴长为6 (2)长轴是短轴的2倍,且过点(2,1) (3) 经过点(5,1),(3,2)例6、若ABC顶点B、C坐标分别为(-4,0),(4,0),AC、AB边上的中线长之和为30,求ABC的重心G的轨迹方程。例7、 已知动圆过定点,且在定圆的内部与其相内切,求动圆圆心的轨迹方程例8、已知点在以坐标轴为对称轴的椭圆上,点到两焦点的距离分别为和,过点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程三、离心率例9、椭圆的左右焦点分别是F1、

9、F2,过点F1作x轴的垂线交椭圆于P点。若F1PF2=60,则椭圆的离心率为_例10、已知正方形ABCD,则以A、B为焦点,且过C、D两点的椭圆的的离心率为_例11、椭圆与轴正向交于点,若这个椭圆上总存在点,使(为坐标原点),求其离心率的取值范围四、最值问题例12、椭圆两焦点为F1、F2,点P在椭圆上,则|PF1|PF2|的最大值为_,最小值为_例14、已知椭圆,A(1,0),P为椭圆上任意一点,求|PA|的最大值和最小值。六、直线和椭圆例16、已知直线l:y=2x+m,椭圆C:,试问当m为何值时: (1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.例17、已知斜率为1的直线l经过椭圆的右焦点,交椭圆于A、B两点,求弦AB的长.例18、已知椭圆及直线(1)当为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为,求直线的方程例19、已知椭圆C:,直线l:y=kx+1,与C交于AB两点,k为何值时,OAOB例20、 已知椭圆,(1)求过点且被平分的弦所在直线的方程;(2)求斜率为2的平行弦的中点轨迹方程;(3)过引椭圆的割线,求截得的弦的中点的轨迹方程;(4)椭圆上有两点、,为原点,且有直线、斜率满足,求线段中点的轨迹方程 12

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 待归类文档
版权提示 | 免责声明

1,本文(椭圆知识点及经典例题汇总(DOC 11页).doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|