中考进步应用题专项训练.doc

上传人(卖家):2023DOC 文档编号:5697387 上传时间:2023-05-04 格式:DOC 页数:10 大小:134KB
下载 相关 举报
中考进步应用题专项训练.doc_第1页
第1页 / 共10页
中考进步应用题专项训练.doc_第2页
第2页 / 共10页
中考进步应用题专项训练.doc_第3页
第3页 / 共10页
中考进步应用题专项训练.doc_第4页
第4页 / 共10页
中考进步应用题专项训练.doc_第5页
第5页 / 共10页
点击查看更多>>
资源描述

1、2014年中考提高应用题专项训练一次函数的最值专题1、某蒜薹生产基地喜获丰收,收获蒜薹200吨经市场调查,可采用批发、零售、冷库储藏后销售三种方式,并按这三种方式销售,计划平均每吨的售价及成本如下表:销售方式批发零售储藏后销售售价(元/吨)300045005500成本(元/吨)70010001200若经过一段时间,蒜薹按计划全部售出获得的总利润为y(元),蒜薹零售x(吨),且零售量是批发量的(1)求y与x之间的函数关系式;(2)由于受条件限制,经冷库储藏售出的蒜薹最多80吨,求该生产基地按计划全部售完蒜薹获得的最大利润2某市乙烯厂某车间生产甲、乙两种塑料的相关信息如下表,请你解答下列问题:(1

2、)设该车间每月生产甲、乙两种塑料各x吨,利润分别为y1元和y2元,分别求y1和y2与x的函数关系式(注:利润=总收入-总支出);(2)已知该车间每月生产甲、乙两种塑料均不超过400吨,若某月要生产甲、乙两种塑料共700吨,求该月生产甲、乙塑料各多少吨,获得的总利润最大?最大利润是多少?3、某公司为了开发新产品,用A、B两种原料各360千克、290千克,试制甲、乙两种新型产品共50件,下表是试验每件新产品所需原料的相关数据:原料含量产品A(单位:千克)B(单位:千克)甲93乙410(1)设生产甲种产品x件,根据题意列出不等式组,求出x的取值范围;(2)若甲种产品每件成本为70元,乙种产品每件成本

3、为90元,设两种产品的成本总额为y元,写出成本总额y(元)与甲种产品件数x(件)之间的函数关系式;当甲、乙两种产品各生产多少件时,产品的成本总额最少?并求出最少的成本总额4、六一前夕”,某玩具经销商用去2350元购进A、B、C三种新型的电动玩具共50套,并且购进的三种玩具都不少于10套,设购进A种玩具x套,B种玩具y套,三种电动玩具的进价和售价如表所示型号ABC进价(元/套)405550售价(元/套)508065(1)用含x、y的代数式表示购进C种玩具的套数;(2)求y与x之间的函数关系式;(3)假设所购进的这三种玩具能全部卖出,且在购销这种玩具的过程中需要另外支出各种费用200元求出利润P(

4、元)与x(套)之间的函数关系式;求出利润的最大值,并写出此时三种玩具各多少套?方案设计专题1、为了保护环境,某企业决定购买10台污水处理设备现有A、B两种型号设备,且A、B两种型号设备的价格分别为每台15万元、12万元经预算,该企业购买设备的资金不超过130万元(1)请你设计,该企业有几种购买方案;(2)A、B两种型号设备每台一个月处理污水量分别为250吨、220吨若企业每月产生的污水量为2260吨,为了尽可能节省资金,应选择哪种购买方案?2,、某工程机械厂根据市场需求,计划生产A、B两型号的大型挖掘机共100台,该厂所筹生产资金不少于22400万元,但不超过22500万元,且所筹集的资金全部

5、用于生产此两型号挖掘机,所生产的此两型号挖掘机可全部售出,此两型号挖掘机的生产成本和售价如下表: 型号AB成本(万元/台)200240售价(万元/台)250300(1)该厂对这两型号挖掘机有哪几种生产方案?(2)该厂如何生产才能获得最大利润?3、(8分)迎接大运,美化深圳,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来

6、(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?4、(本题9分)(2008深圳)”“震灾无情人有情”民政局将全市为四川受灾地区捐赠的物资打包成件,其中帐篷和食品共320件,帐篷比食品多80件(1)求打包成件的帐篷和食品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批帐篷和食品全部运往受灾地区已知甲种货车最多可装帐篷40件和食品10件,乙种货车最多可装帐篷和食品各20件则民政局安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在第(2)问的条件下,如果甲种货车每辆需付运输费4000元,乙种货车每辆需付

7、运输费3600元民政局应选择哪种方案可使运输费最少?最少运输费是多少元?5、某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完两商店销售这两种产品每件的利润(元)如下表:A型利润B型利润甲店200170乙店160150(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品

8、的每件利润甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?6、我市花石镇组织10辆汽车装运完A、B、C三种不同品质的湘莲共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装同一种湘莲,根据下表提供的信息,解答以下问题:设装运A种湘莲的车辆数为x,装运B种湘莲的车辆数为y,求y与x之间的函数关系式;如果装运每种湘莲的车辆数都不少于2辆,那么车辆的安排方案有几种?并写出每种安排方案;若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值湘莲品种ABC每辆汽车运载量(吨)12108每吨湘莲获利(万元)3427(8分)(2012深圳

9、)“节能环保,低碳生活”是我们倡导的一种生活方式,某家电商场计划用11.8万元购进节能型电视机、洗衣机和空调共40台,三种家电的进价和售价如表所示:种类价格进价(元/台)售价(元/台)电视机50005500洗衣机20002160空 调24002700(1)在不超出现有资金的前提下,若购进电视机的数量和洗衣机的数量相同,空调的数量不超过电视机的数量的3倍请问商场有哪几种进货方案?(2)在“2012年消费促进月”促销活动期间,商家针对这三种节能型产品推出“现金每购1000元送50元家电消费券一张、多买多送”的活动在(1)的条件下,若三种电器在活动期间全部售出,商家预估最多送出多少张?8(9分)(2

10、011深圳)深圳某科技公司在甲地、乙地分别生产了17台、15台同一型号的检测设备,全部运往大运赛场、两馆,其中运往馆18台,运往馆14台;运往、两馆的运费如表1:(1)设甲地运往馆的设备有台,请填写表2,并求出总运费(元)与(台)的函数关系式;(2)要使总运费不高于20200元,请你帮助该公司设计调配方案,并写出有哪几种方案;(3)当为多少时,总运费最小,最小值是多少?出发地目的地甲地乙地A馆800元/台700元/台B馆500元/台600元/台出发地目的地甲地乙地A馆 (台) (台)B馆 (台) (台)表1 表29(本题9分)(2009深圳)某汽车制造厂开发了一款新式电动汽车,计划一年生产安装

11、240辆。由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装。生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车。(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(4分)(2)如果工厂招聘n(0n10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?(3分)(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使

12、新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能的少?(2分)二次函数最值专题1、某商品的进价为每件40元,售价为每件50元,每个月可卖出210件。如果每件商品的售价上涨1元,则每个月少卖出10件(每件售价不能高于65)。设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元。(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大利润是多少元?(3)每件商品的售价定为多少时,每个月的利润恰为2200元?请根据以上结论,请你直接写出售价在什么范围内,每个月的利润不低于2200元?2、某水果批发商销售每箱进价为

13、40元的苹果,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?3、某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满当每个房间每天的房价每增加10元时,就会有一个房间空闲宾馆需对游客居住的每个房间每天支出20元的各种费用根据规定,每个房间每天的房价不得高于340元设每个房间的房价增加x元(x为10的正整数倍)(

14、1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;(2)设宾馆一天的利润为w元,求w与x的函数关系式;(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?4、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=65时,y=55;x=75时,y=45(1)求一次函数y=kx+b的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于5

15、00元,试确定销售单价x的范围5、某服装公司试销一种成本为每件50元的T恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量y(件)与销售单价x(元)的关系可以近似的看作一次函数(如图)(1)求y与x之间的函数关系式;(2)设公司获得的总利润为P元,求P与x之间的函数关系式,并写出自变量x的取值范围;根据题意判断:当x取何值时,P的值最大,最大值是多少?6(本题8分)(2010深圳)儿童商场购进一批M型服装,销售时标价为75元/件,按8折销售仍可获利50%商场现决定对M型服装开展促销活动,每件在8折的基础上再降价x元销售,已知每天销售数量y(件)与降价x元之间的函数关系为y

16、204x(x0)(1)求M型服装的进价;(3分)(2)求促销期间每天销售M型服装所获得的利润W的最大值(5分)7(本题9分)(2006深圳)工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等。(1)(4分)该工艺品每件的进价、标价分别是多少元?(2)(4分)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件。若每件工艺品降价1元,则每天可多售出该工艺品4件。问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?8某商品的进价为每件30元,现在的售价为每件40元,每星期

17、可卖出150件市场调查反映:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件设每件涨价x元(x为非负整数),每星期的销量为y件 (1)求y与x的函数关系式及自变量x的取值范围; (2)如何定价才能使每星期的利润最大且每星期销量较大?每星期的最大利润是多少?分式方程专题1(本题9分)(2007深圳)两地相距公里,甲工程队要在两地间铺设一条输送天然气管道,乙工程队要在两地间铺设一条输油管道已知甲工程队每周比乙工程队少铺设公里,甲工程队提前周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?2、(本题9分)(2005深圳)某工程,甲工程队单独做40天完成,若乙工程队单独做30天后,甲、乙两工程队再合作20天完成。 (1)(5分)求乙工程队单独做需要多少天完成? (2)(4分)将工程分两部分,甲做其中一部分用了x天,乙做另一部分用了y天,其中x、y均为正整数,且x15,y70,求x、y.3、(本题9分)(2004深圳)在深圳“净畅宁”行动中,有一块面积为150亩的绿化工程面向全社会公开招标。现有甲、乙两工程队前来竞标,甲队计划比规定时间少4天,乙按规划时间完成。甲队比乙队每天多绿化10亩,问:规定时间是多少天?(8分)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中 > 各科综合资料
版权提示 | 免责声明

1,本文(中考进步应用题专项训练.doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|