中考数学二次函数综合练习题含详细答案.doc

上传人(卖家):2023DOC 文档编号:5698564 上传时间:2023-05-04 格式:DOC 页数:19 大小:1.16MB
下载 相关 举报
中考数学二次函数综合练习题含详细答案.doc_第1页
第1页 / 共19页
中考数学二次函数综合练习题含详细答案.doc_第2页
第2页 / 共19页
中考数学二次函数综合练习题含详细答案.doc_第3页
第3页 / 共19页
中考数学二次函数综合练习题含详细答案.doc_第4页
第4页 / 共19页
中考数学二次函数综合练习题含详细答案.doc_第5页
第5页 / 共19页
点击查看更多>>
资源描述

1、一、二次函数 真题与模拟题分类汇编(难题易错题)1如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D(1)求二次函数的表达式; (2)在y轴上是否存在一点P,使PBC为等腰三角形?若存在请求出点P的坐标; (3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,MNB面积最大,试求出最大面积【答案】(1)二次函数的表达式为:y=x24x+3;(2)点P的坐标为:(0

2、,3+3)或(0,33)或(0,-3)或(0,0);(3)当点M出发1秒到达D点时,MNB面积最大,最大面积是1此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处【解析】【分析】(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程组,解方程组即可得二次函数的表达式;(2)先求出点B的坐标,再根据勾股定理求得BC的长,当PBC为等腰三角形时分三种情况进行讨论:CP=CB;BP=BC;PB=PC;分别根据这三种情况求出点P的坐标;(3)设AM=t则DN=2t,由AB=2,得BM=2t,SMNB=(2t)2t=t2+2t,把解析式化为顶点式,根据二次函数的性质即可得MN

3、B最大面积;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处【详解】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=4,c=3,二次函数的表达式为:y=x24x+3;(2)令y=0,则x24x+3=0,解得:x=1或x=3,B(3,0),BC=3,点P在y轴上,当PBC为等腰三角形时分三种情况进行讨论:如图1,当CP=CB时,PC=3,OP=OC+PC=3+3或OP=PCOC=33P1(0,3+3),P2(0,33);当PB=PC时,OP=OB=3,P3(0,-3);当BP=BC时,OC=OB=3此时P与O重合,P4(0,0);综上所述

4、,点P的坐标为:(0,3+3)或(0,33)或(3,0)或(0,0);(3)如图2,设AM=t,由AB=2,得BM=2t,则DN=2t,SMNB=(2t)2t=t2+2t=(t1)2+1,当点M出发1秒到达D点时,MNB面积最大,最大面积是1此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处2如图,在平面直角坐标系中有一直角三角形AOB,O为坐标原点,OA1,tanBAO3,将此三角形绕原点O逆时针旋转90,得到DOC,抛物线yax2+bx+c经过点A、B、C(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴l与x轴交于一点E,连接

5、PE,交CD于F,求以C、E、F为顶点三角形与COD相似时点P的坐标【答案】(1)抛物线的解析式为y=x22x+3;(2)当CEF与COD相似时,P点的坐标为(1,4)或(2,3)【解析】【分析】(1)根据正切函数,可得OB,根据旋转的性质,可得DOCAOB,根据待定系数法,可得函数解析式;(2)分两种情况讨论:当CEF90时,CEFCOD,此时点P在对称轴上,即点P为抛物线的顶点;当CFE90时,CFECOD,过点P作PMx轴于M点,得到EFCEMP,根据相似三角形的性质,可得PM与ME的关系,解方程,可得t的值,根据自变量与函数值的对应关系,可得答案【详解】(1)在RtAOB中,OA1,t

6、anBAO3,OB3OA3DOC是由AOB绕点O逆时针旋转90而得到的,DOCAOB,OCOB3,ODOA1,A,B,C的坐标分别为(1,0),(0,3),(3,0),代入解析式为,解得:,抛物线的解析式为yx22x+3;(2)抛物线的解析式为yx22x+3,对称轴为l1,E点坐标为(1,0),如图,分两种情况讨论:当CEF90时,CEFCOD,此时点P在对称轴上,即点P为抛物线的顶点,P(1,4);当CFE90时,CFECOD,过点P作PMx轴于M点,CFE=PME=90,CEF=PEM,EFCEMP,MP3ME点P的横坐标为t,P(t,t22t+3)P在第二象限,PMt22t+3,ME1t

7、,t0,t22t+33(1t),解得:t12,t23(与t0矛盾,舍去)当t2时,y(2)22(2)+33,P(2,3)综上所述:当CEF与COD相似时,P点的坐标为(1,4)或(2,3)【点睛】本题是二次函数综合题解(1)的关键是利用旋转的性质得出OC,OD的长,又利用了待定系数法;解(2)的关键是利用相似三角形的性质得出MP3ME3抛物线yax2+bx3(a0)与直线ykx+c(k0)相交于A(1,0)、B(2,3)两点,且抛物线与y轴交于点C(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若PCD是以CD为底边的等腰三角形,求出点P的坐标【答案】(1)

8、yx22x3;(2)C(0,3),D(0,1);(3)P(1+,2).【解析】【分析】(1)把A(1,0)、B(2,3)两点坐标代入yax2+bx3可得抛物线解析式(2)当x0时可求C点坐标,求出直线AB解析式,当x0可求D点坐标(3)由题意可知P点纵坐标为2,代入抛物线解析式可求P点横坐标【详解】解:(1)把A(1,0)、B(2,3)两点坐标代入yax2+bx3可得 解得 yx22x3(2)把x0代入yx22x3中可得y3C(0,3)设ykx+b,把A(1,0)、B(2,3)两点坐标代入解得 yx1D(0,1)(3)由C(0,3),D(0,1)可知CD的垂直平分线经过(0,2)P点纵坐标为2

9、,x22x32解得:x1,x0x1+P(1+,2)【点睛】本题是二次函数综合题,用待定系数法求二次函数的解析式,把x0代入二次函数解析式和一次函数解析式可求图象与y轴交点坐标,知道点P纵坐标带入抛物线解析式可求点P的横坐标4函数的图象记为,函数的图象记为,其中为常数,与合起来的图象记为.()若过点时,求的值;()若的顶点在直线上,求的值;()设在上最高点的纵坐标为,当时,求的取值范围.【答案】();();().【解析】【分析】()将点C的坐标代入的解析式即可求出m的值;()先求出抛物线的顶点坐标,再根据顶点在直线上得出关于m的方程,解之即可()先求出抛物线的顶点坐标,结合()抛物线的顶点坐标,

10、和x的取值范围,分三种情形讨论求解即可;【详解】解:()将点代入的解析式,解得()抛物线的顶点坐标为,令,得,()抛物线的顶点,抛物线的顶点,当时,最高点是抛物线G1的顶点,解得当时,G1中(2,2m-1)是最高点,2m-12m-1,解得当时,G2中(-4,4m-9)是最高点,4m-94m-9,解得.综上所述,即为所求.【点睛】本题考查二次函数综合题,待定系数法、不等式组等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,利用数形结合的思想解决问题,属于中考压轴题5如图,抛物线yx2+bx+c经过A(1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的

11、顶点,抛物线对称轴DE交x轴于点E,连接BD(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PEPC时,求点P的坐标【答案】(1)yx2+2x+3;(2)点P的坐标为(2,2)【解析】【分析】(1)利用待定系数法求出过A,B,C三点的抛物线的函数表达式;(2)连接PC、PE,利用公式求出顶点D的坐标,利用待定系数法求出直线BD的解析式,设出点P的坐标为(x,2x+6),利用勾股定理表示出PC2和PE2,根据题意列出方程,解方程求出x的值,计算求出点P的坐标【详解】解:(1)抛物线yx2+bx+c经过A(1,0),B(3,0)两点,解得,所求的抛物线的函数表达式为y

12、x2+2x+3;(2)如图,连接PC,PE抛物线的对称轴为x1当x1时,y4,点D的坐标为(1,4)设直线BD的解析式为ykx+b,则, 解得直线BD的解析式为:y2x+6,设点P的坐标为(x,2x+6),又C(0,3),E(1,0),则PC2x2+(3+2x6)2,PE2(x1)2+(2x+6)2,PCPE,x2+(3+2x6)2(x1)2+(2x+6)2,解得,x2,则y22+62,点P的坐标为(2,2)【点睛】本题考查的是二次函数的图象和性质、待定系数法求函数解析式,掌握二次函数的图象和性质、灵活运用待定系数法是解题的关键6已知二次函数的图象以A(1,4)为顶点,且过点B(2,5)(1)

13、求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A、B,求O AB的面积【答案】(1)y=x22x+3;(2)抛物线与x轴的交点为:(3,0),(1,0)(3)15.【解析】【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B点坐标代入,即可求出二次函数的解析式;(2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标;(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A、

14、B的坐标由于OAB不规则,可用面积割补法求出OAB的面积【详解】(1)设抛物线顶点式y=a(x+1)2+4,将B(2,5)代入得:a=1,该函数的解析式为:y=(x+1)2+4=x22x+3;(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3),令y=0,x22x+3=0,解得:x1=3,x2=1,即抛物线与x轴的交点为:(3,0),(1,0);(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(3,0),N(1,0),当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位,故A(2,4),B(5,5),SOAB=(2+5)92455=15【点睛】本题

15、考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的求法等知识熟练掌握待定系数法、函数图象与坐标轴的交点的求解方法、不规则图形的面积的求解方法等是解题的关键.7复习课中,教师给出关于x的函数(k是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选择如下四条:存在函数,其图像经过(1,0)点;函数图像与坐标轴总有三个不同的交点;当时,不是y随x的增大而增大就是y随x的增大而减小;若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数;教师:请你分别判断四条结论的真假,

16、并给出理由,最后简单写出解决问题时所用的数学方法.【答案】真,假,假,真,理由和所用的数学方法见解析.【解析】试题分析:根据方程思想,特殊与一般思想,反证思想,分类思想对各结论进行判断.试题解析:真,假,假,真.理由如下:将(1,0)代入,得,解得.存在函数,其图像经过(1,0)点.结论为真.举反例如,当时,函数的图象与坐标轴只有两个不同的交点.结论为假.当时,二次函数(k是实数)的对称轴为,可举反例如,当时,二次函数为,当时,y随x的增大而减小;当时,y随x的增大而增大.结论为假.当时,二次函数的最值为,当时,有最小值,最小值为负;当时,有最大值,最大值为正.结论为真.解决问题时所用的数学方

17、法有方程思想,特殊与一般思想,反证思想,分类思想考点:1.曲线上点的坐标与方程的关系;2.二次函数的性质;3.方程思想、特殊元素法、反证思想和分类思想的应用.8如图,已知抛物线过点A(,-3) 和B(3,0),过点A作直线AC/x轴,交y轴与点C(1)求抛物线的解析式; (2)在抛物线上取一点P,过点P作直线AC的垂线,垂足为D,连接OA,使得以A,D,P为顶点的三角形与AOC相似,求出对应点P的坐标; (3)抛物线上是否存在点Q,使得?若存在,求出点Q的坐标;若不存在,请说明理由. 【答案】(1);(2)P点坐标为(4 ,6)或(,- );(3)Q点坐标(3,0)或(-2,15)【解析】【分

18、析】(1)把A与B坐标代入抛物线解析式求出a与b的值,即可确定出解析式;(2)设P坐标为,表示出AD与PD,由相似分两种情况得比例求出x的值,即可确定出P坐标;(3)存在,求出已知三角形AOC边OA上的高h,过O作OMOA,截取OM=h,与y轴交于点N,分别确定出M与N坐标,利用待定系数法求出直线MN解析式,与抛物线解析式联立求出Q坐标即可【详解】(1)把,和点,代入抛物线得:,解得:,则抛物线解析式为;(2)当在直线上方时,设坐标为,则有,当时,即,整理得:,即,解得:,即或(舍去),此时,;当时,即,整理得:,即,解得:,即或(舍去),此时,;当点时,也满足;当在直线下方时,同理可得:的坐

19、标为,综上,的坐标为,或,或,或;(3)在中,根据勾股定理得:, ,边上的高为,过作,截取,过作,交轴于点,如图所示:在中,即,过作轴,在中,即,设直线解析式为,把坐标代入得:,即,即,联立得:,解得:或,即,或,则抛物线上存在点,使得,此时点的坐标为,或,【点睛】二次函数综合题,涉及的知识有:待定系数法求函数解析式,相似三角形的判定与性质,点到直线的距离公式,熟练掌握待定系数法是解本题的关键9如图,在平面直角坐标系中,已知抛物线y=x2+x2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过A,C两点,连接BC(1)求直线l的解析式;(2)若直线x=m(m0)与该抛物线在第

20、三象限内交于点E,与直线l交于点D,连接OD当ODAC时,求线段DE的长;(3)取点G(0,1),连接AG,在第一象限内的抛物线上,是否存在点P,使BAP=BCOBAG?若存在,求出点P的坐标;若不存在,请说明理由【答案】(1)y=;(2)DE=;(3)存在点P(,),使BAP=BCOBAG,理由见解析.【解析】【分析】(1)根据题目中的函数解析式可以求得点A和点C的坐标,从而可以求得直线l的函数解析式;(2)根据题意作出合适的辅助线,利用三角形相似和勾股定理可以解答本题;(3)根据题意画出相应的图形,然后根据锐角三角函数可以求得OAC=OCB,然后根据题目中的条件和图形,利用锐角三角函数和勾

21、股定理即可解答本题【详解】(1)抛物线y=x2+x-2,当y=0时,得x1=1,x2=-4,当x=0时,y=-2,抛物线y=x2+x-2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(-4,0),点B(1,0),点C(0,-2),直线l经过A,C两点,设直线l的函数解析式为y=kx+b,得,即直线l的函数解析式为y=x2; (2)直线ED与x轴交于点F,如图1所示,由(1)可得,AO=4,OC=2,AOC=90,AC=2,OD=,ODAC,OAOC,OAD=CAO,AODACO,即,得AD=,EFx轴,ADC=90,EFOC,ADFACO,解得,AF=,DF=,OF=4

22、-=,m=-,当m=-时,y=()2+(-)-2=-,EF=,DE=EF-FD=;(3)存在点P,使BAP=BCO-BAG, 理由:作GMAC于点M,作PNx轴于点N,如图2所示,点A(-4,0),点B(1,0),点C(0,-2),OA=4,OB=1,OC=2,tanOAC=,tanOCB=,AC=2,OAC=OCB,BAP=BCO-BAG,GAM=OAC-BAG,BAP=GAM,点G(0,-1),AC=2,OA=4,OG=1,GC=1,AG=,即,解得,GM=,AM=,tanGAM=,tanPAN=,设点P的坐标为(n,n2+n-2),AN=4+n,PN=n2+n-2,解得,n1=,n2=-

23、4(舍去),当n=时,n2+n-2=,点P的坐标为(,),即存在点P(,),使BAP=BCO-BAG【点睛】本题是一道二次函数综合题,解答本题的关键是明确题意,作出合适的辅助线,找出所求问题需要的条件,利用三角形相似、锐角三角函数和二次函数的性质解答10如图1,抛物线y=ax2+2x+c与x轴交于A(4,0),B(1,0)两点,过点B的直线y=kx+分别与y轴及抛物线交于点C,D(1)求直线和抛物线的表达式;(2)动点P从点O出发,在x轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t秒,当t为何值时,PDC为直角三角形?请直接写出所有满足条件的t的值;(3)如图2,将直线BD沿

24、y轴向下平移4个单位后,与x轴,y轴分别交于E,F两点,在抛物线的对称轴上是否存在点M,在直线EF上是否存在点N,使DM+MN的值最小?若存在,求出其最小值及点M,N的坐标;若不存在,请说明理由【答案】(1)抛物线解析式为:y=,BD解析式为y=;(2)t的值为、(3)N点坐标为(2,2),M点坐标为(,),. 【解析】分析:(1)利用待定系数法求解可得;(2)先求得点D的坐标,过点D分别作DEx轴、DFy轴,分P1DP1C、P2DDC、P3CDC三种情况,利用相似三角形的性质逐一求解可得;(3)通过作对称点,将折线转化成两点间距离,应用两点之间线段最短详解:(1)把A(4,0),B(1,0)

25、代入y=ax2+2x+c,得,解得:,抛物线解析式为:y=,过点B的直线y=kx+,代入(1,0),得:k=,BD解析式为y=;(2)由得交点坐标为D(5,4),如图1,过D作DEx轴于点E,作DFy轴于点F,当P1DP1C时,P1DC为直角三角形,则DEP1P1OC,=,即=,解得t=,当P2DDC于点D时,P2DC为直角三角形由P2DBDEB得=,即=,解得:t=;当P3CDC时,DFCCOP3,=,即=,解得:t=,t的值为、(3)由已知直线EF解析式为:y=x,在抛物线上取点D的对称点D,过点D作DNEF于点N,交抛物线对称轴于点M过点N作NHDD于点H,此时,DM+MN=DN最小则EOFNHD设点N坐标为(a,),=,即=,解得:a=2,则N点坐标为(2,2),求得直线ND的解析式为y=x+1,当x=时,y=,M点坐标为(,),此时,DM+MN的值最小为=2点睛:本题是二次函数和几何问题综合题,应用了二次函数性质以及转化的数学思想、分类讨论思想解题时注意数形结合

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中 > 各科综合资料
版权提示 | 免责声明

1,本文(中考数学二次函数综合练习题含详细答案.doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|