(完整版)高考文科数学函数专题讲解及高考真题精选(含答案).doc

上传人(卖家):2023DOC 文档编号:5698831 上传时间:2023-05-04 格式:DOC 页数:14 大小:1.68MB
下载 相关 举报
(完整版)高考文科数学函数专题讲解及高考真题精选(含答案).doc_第1页
第1页 / 共14页
(完整版)高考文科数学函数专题讲解及高考真题精选(含答案).doc_第2页
第2页 / 共14页
(完整版)高考文科数学函数专题讲解及高考真题精选(含答案).doc_第3页
第3页 / 共14页
(完整版)高考文科数学函数专题讲解及高考真题精选(含答案).doc_第4页
第4页 / 共14页
(完整版)高考文科数学函数专题讲解及高考真题精选(含答案).doc_第5页
第5页 / 共14页
点击查看更多>>
资源描述

1、函 数【1.2.1】函数的概念(1)函数的概念设、是两个非空的数集,如果按照某种对应法则,对于集合中任何一个数,在集合中都有唯一确定的数和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的一个函数,记作函数的三要素:定义域、值域和对应法则只有定义域相同,且对应法则也相同的两个函数才是同一函数(2)区间的概念及表示法设是两个实数,且,满足的实数的集合叫做闭区间,记做;满足的实数的集合叫做开区间,记做;满足,或的实数的集合叫做半开半闭区间,分别记做,;满足的实数的集合分别记做注意:对于集合与区间,前者可以大于或等于,而后者必须(3)求函数的定义域时,一般遵循以下原则:是整式时,定义域

2、是全体实数是分式函数时,定义域是使分母不为零的一切实数是偶次根式时,定义域是使被开方式为非负值时的实数的集合对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1中,零(负)指数幂的底数不能为零若是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集对于求复合函数定义域问题,一般步骤是:若已知的定义域为,其复合函数的定义域应由不等式解出对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义(4)求函数的值域或最值求函数最值的常用方法和求函数值域

3、的方法基本上是相同的事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值因此求函数的最值与值域,其实质是相同的,只是提问的角度不同求函数值域与最值的常用方法: 观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值判别式法:若函数可以化成一个系数含有的关于的二次方程,则在时,由于为实数,故必须有,从而确定函数的值域或最值不等式法:利用基本不等式确定函数的值域或最值换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题反

4、函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值数形结合法:利用函数图象或几何方法确定函数的值域或最值函数的单调性法【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种 解析法:就是用数学表达式表示两个变量之间的对应关系列表法:就是列出表格来表示两个变量之间的对应关系图象法:就是用图象表示两个变量之间的对应关系(6)映射的概念设、是两个集合,如果按照某种对应法则,对于集合中任何一个元素,在集合中都有唯一的元素和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的映射,记作给定一个集合到集合的映射,且如果元素和元素对

5、应,那么我们把元素叫做元素的象,元素叫做元素的原象1.3函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性定义及判定方法函数的性 质定义图象判定方法函数的单调性如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1 x2时,都有f(x1)f(x2),那么就说f(x)在这个区间上是增函数(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增)(4)利用复合函数如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1f(x2),那么就说f(x)在这个区间上是减函数(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(

6、在某个区间图象下降为减)(4)利用复合函数在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数yxo对于复合函数,令,若为增,为增,则为增;若为减,为减,则为增;若为增,为减,则为减;若为减,为增,则为减(2)打“”函数的图象与性质分别在、上为增函数,分别在、上为减函数(3)最大(小)值定义 一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有; (2)存在,使得那么,我们称是函数 的最大值,记作一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有;(2)存在,使得那么,我们称是函数的最小值,记作

7、【1.3.2】奇偶性(4)函数的奇偶性定义及判定方法函数的性 质定义图象判定方法函数的奇偶性如果对于函数f(x)定义域内任意一个x,都有f(x)=f(x),那么函数f(x)叫做奇函数(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x,都有f(x)=f(x),那么函数f(x)叫做偶函数(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y轴对称)若函数为奇函数,且在处有定义,则奇函数在轴两侧相对称的区间增减性相同,偶函数在轴两侧相对称的区间增减性相反在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函

8、数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数补充知识函数的图象(1)作图利用描点法作图:确定函数的定义域; 化解函数解析式;讨论函数的性质(奇偶性、单调性); 画出函数的图象利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象平移变换伸缩变换 对称变换 (2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系(3)用图 函数图象形象地显示了函数的性质,为研究数量

9、关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具要重视数形结合解题的思想方法第二章 基本初等函数()2.1指数函数【2.1.1】指数与指数幂的运算(1)根式的概念如果,且,那么叫做的次方根当是奇数时,的次方根用符号表示;当是偶数时,正数的正的次方根用符号表示,负的次方根用符号表示;0的次方根是0;负数没有次方根式子叫做根式,这里叫做根指数,叫做被开方数当为奇数时,为任意实数;当为偶数时,根式的性质:;当为奇数时,;当为偶数时, (2)分数指数幂的概念正数的正分数指数幂的意义是:且0的正分数指数幂等于0正数的负分数指数幂的意义是:且0的负分数指数幂没有意义 注意口诀:底数取

10、倒数,指数取相反数(3)分数指数幂的运算性质 【2.1.2】指数函数及其性质(4)指数函数函数名称指数函数定义函数且叫做指数函数图象0101定义域值域过定点图象过定点,即当时,奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,越大图象越高;在第二象限内,越大图象越低2.2对数函数【2.2.1】对数与对数运算(1) 对数的定义 若,则叫做以为底的对数,记作,其中叫做底数,叫做真数负数和零没有对数对数式与指数式的互化:(2)几个重要的对数恒等式,(3)常用对数与自然对数常用对数:,即;自然对数:,即(其中)(4)对数的运算性质 如果,那么加法: 减法:数乘:

11、 换底公式:【2.2.2】对数函数及其性质(5)对数函数函数名称对数函数定义函数且叫做对数函数图象0101定义域值域过定点图象过定点,即当时,奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,越大图象越靠低;在第四象限内,越大图象越靠高(6)反函数的概念设函数的定义域为,值域为,从式子中解出,得式子如果对于在中的任何一个值,通过式子,在中都有唯一确定的值和它对应,那么式子表示是的函数,函数叫做函数的反函数,记作,习惯上改写成(7)反函数的求法确定反函数的定义域,即原函数的值域;从原函数式中反解出;将改写成,并注明反函数的定义域 (8)反函数的性质 原函数

12、与反函数的图象关于直线对称函数的定义域、值域分别是其反函数的值域、定义域若在原函数的图象上,则在反函数的图象上一般地,函数要有反函数则它必须为单调函数2.3幂函数(1)幂函数的定义 一般地,函数叫做幂函数,其中为自变量,是常数(2)幂函数的图象(3)幂函数的性质图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象幂函数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限 过定点:所有的幂函数在都有定义,并且图象都通过点 单调性:如果,则幂函数的图象过原点,并且在上为增函数如果,则幂函数的图象在

13、上为减函数,在第一象限内,图象无限接近轴与轴奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数当(其中互质,和),若为奇数为奇数时,则是奇函数,若为奇数为偶数时,则是偶函数,若为偶数为奇数时,则是非奇非偶函数图象特征:幂函数,当时,若,其图象在直线下方,若,其图象在直线上方,当时,若,其图象在直线上方,若,其图象在直线下方补充知识二次函数(1)二次函数解析式的三种形式一般式:顶点式:两根式:(2)求二次函数解析式的方法已知三个点坐标时,宜用一般式已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式若已知抛物线与轴有两个交点,且横线坐标已知时,选用两根式求更方便(3

14、)二次函数图象的性质二次函数的图象是一条抛物线,对称轴方程为顶点坐标是当时,抛物线开口向上,函数在上递减,在上递增,当时,;当时,抛物线开口向下,函数在上递增,在上递减,当时,二次函数当时,图象与轴有两个交点(4)一元二次方程根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布 设一元二次方程的两实根为,且令,从以下四个方面来分析此类问题:开口方向: 对称轴位置: 判别式: 端点函数值符号 (5)二次函数在

15、闭区间上的最值 设在区间上的最大值为,最小值为,令()当时(开口向上)xy0aOabx2-=pqf(p)f(q)xy0aOabx2-=pqf(p)f(q)xy0aOabx2-=pqf(p)f(q)若,则 若,则 若,则xy0aOabx2-=pqf(p)f(q)若,则 ,则xy0aOabx2-=pqf(p)f(q)()当时(开口向下)xy0aOabx2-=pqf(p)f(q)若,则 若,则 若,则xy0aOabx2-=pqf(p)f(q)xy0aOabx2-=pqf(p)f(q)若,则 ,则xy0aOabx2-=pqf(p)f(q)xy0aOabx2-=pqf(p)f(q)第三章 函数的应用一、

16、方程的根与函数的零点1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根函数的图象与轴有交点函数有零点3、函数零点的求法:求函数的零点: (代数法)求方程的实数根; (几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点4、二次函数的零点:二次函数),方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点),方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点),方程无实根,二次函数的图象与轴无交点,二次函数

17、无零点09-13高考真题09.2. 函数的反函数是A. B.C. D.【答案】D09.17. (本小题满分12分) 围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙长度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元)。()将y表示为x的函数:()试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。17. 本小题主要考查函数和不等式等基础知识,考查用平均不等式求最值和运用数学知识解决实际问题的能力

18、。(满分12分)解:()如图,设矩形的另一边长为m,则-45x-180(x-2)+1802a=225x+360a-360由已知xa=360,得a=,所以y=225x+().当且仅当225x=时,等号成立.即当x=24m时,修建围墙的总费用最小,最小总费用是10440元.10.3.已知函数,则BA.4B. C.-4D-10.5函数的定义域为A.( ,1)B(,)C(1,+)D. ( ,1)(1,+)10.16.(本小题满分12分)已经函数()函数的图象可由函数的图象经过怎样变化得出?()求函数的最小值,并求使用取得最小值的的集合。11.3若定义在R上的偶函数和奇函数满足,则=A B C D 【详

19、细解析】则=,=【考点定位】 考查任何函数都可以写成一个奇函数与一个偶函数的和。f(x)= ,其中偶函数G(x) =,奇函数H(x)= .属于中档题.11.8直线与不等式组表示的平面区域的公共点有A0个 B1个 C2个 D无数个11.19(本小题满分12分)提高过江大桥的车辆通行能力可改善整个城市的交通状况的一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时研究表明:当时,车流速度是车流密度的一次函数()当时,求函数的表达式;()当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)可以达到最大,并求出最大值(精确到1辆/小时) 12.6.已知定义在区间上的函数的图象如图所示,则的图象为( ) 13.8x为实数,表示不超过的最大整数,则函数在上为A奇函数 B偶函数 C增函数 D 周期函数13.10已知函数有两个极值点,则实数的取值范围是A B C D13.21(本小题满分13分)设,已知函数.()当时,讨论函数的单调性;()当时,称为、关于的加权平均数.(i)判断, ,是否成等比数列,并证明;(ii)、的几何平均数记为G. 称为、的调和平均数,记为H. 若,求的取值范围.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中 > 各科综合
版权提示 | 免责声明

1,本文((完整版)高考文科数学函数专题讲解及高考真题精选(含答案).doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|