1、一、复数选择题1复数(其中i为虚数单位)的虚部为( )ABC9D2是虚数单位,复数( )ABCD3( )A1B1CD4已知,若(i为虚数单位),则a的取值范围是( )A或B或CD5已知复数,则( )ABCD6设是虚数,是实数,且,则的实部取值范围是( )ABCD7满足的复数的共扼复数是( )ABCD8已知复数,为的共轭复数,则( )AB2C10D9复数,(为虚数单位),则虚部等于( )AB3CD10若,则在复平面内,复数所对应的点位于( )A第一象限B第二象限C第三象限D第四象限11设复数满足,则的共轭复数在复平面内的对应点位于( )A第一象限B第二象限C第三象限D第四象限12已知是的共轭复数
2、,则( )A4B2C0D13已知是虚数单位,设复数,其中,则的值为( )ABCD14已知为虚数单位,则( )ABCD15复数(其中i为虚数单位),则( )A5BC2D二、多选题16是虚数单位,下列说法中正确的有( )A若复数满足,则B若复数,满足,则C若复数,则可能是纯虚数D若复数满足,则对应的点在第一象限或第三象限17已知复数Z在复平面上对应的向量则( )Az=-1+2iB|z|=5CD18已知复数满足,则可能为( ).A0BCD19若复数满足(为虚数单位),则下列结论正确的有( )A的虚部为BC的共轭复数为D是第三象限的点20已知复数(其中为虚数单位),则( )A复数在复平面上对应的点可能
3、落在第二象限B可能为实数CD的实部为21下列说法正确的是( )A若,则B若复数,满足,则C若复数的平方是纯虚数,则复数的实部和虛部相等D“”是“复数是虚数”的必要不充分条件22设i为虚数单位,复数,则下列命题正确的是( )A若为纯虚数,则实数a的值为2B若在复平面内对应的点在第三象限,则实数a的取值范围是 C实数是(为的共轭复数)的充要条件D若,则实数a的值为223已知复数的共轭复数为,且,则下列结论正确的是( )AB虚部为CD24若复数,其中为虚数单位,则下列结论正确的是( )A的虚部为BC为纯虚数D的共轭复数为25已知i为虚数单位,下列说法正确的是( )A若,且,则B任意两个虚数都不能比较
4、大小C若复数,满足,则D的平方等于126以下命题正确的是( )A是为纯虚数的必要不充分条件B满足的有且仅有C“在区间内”是“在区间内单调递增”的充分不必要条件D已知,则27(多选)表示( )A点与点之间的距离B点与点之间的距离C点到原点的距离D坐标为的向量的模28对任意,下列结论成立的是( )A当m,时,有B当,时,若,则且C互为共轭复数的两个复数的模相等,且D的充要条件是29已知复数,下列结论正确的是( )A“”是“为纯虚数”的充分不必要条件B“”是“为纯虚数”的必要不充分条件C“”是“为实数”的充要条件D“”是“为实数”的充分不必要条件30设复数z满足,i为虚数单位,则下列命题正确的是(
5、)AB复数z在复平面内对应的点在第四象限Cz的共轭复数为D复数z在复平面内对应的点在直线上【参考答案】*试卷处理标记,请不要删除一、复数选择题1C【分析】应用复数相乘的运算法则计算即可.【详解】解: 所以的虚部为9.故选:C.解析:C【分析】应用复数相乘的运算法则计算即可.【详解】解: 所以的虚部为9.故选:C.2B【分析】由复数除法运算直接计算即可.【详解】.故选:B.解析:B【分析】由复数除法运算直接计算即可.【详解】.故选:B.3D【分析】利用复数的除法运算即可求解.【详解】,故选:D解析:D【分析】利用复数的除法运算即可求解.【详解】,故选:D4A【分析】根据虚数不能比较大小可得,再解
6、一元二次不等式可得结果.【详解】因为,所以,所以或.故选:A【点睛】关键点点睛:根据虚数不能比较大小得是解题关键,属于基础题.解析:A【分析】根据虚数不能比较大小可得,再解一元二次不等式可得结果.【详解】因为,所以,所以或.故选:A【点睛】关键点点睛:根据虚数不能比较大小得是解题关键,属于基础题.5B【分析】根据复数的四则运算法则及模的计算公式,即可得到选项.【详解】由题,得,所以.故选:B.解析:B【分析】根据复数的四则运算法则及模的计算公式,即可得到选项.【详解】由题,得,所以.故选:B.6B【分析】设,由是实数可得,即得,由此可求出.【详解】设,则,是实数,则,则,解得,故的实部取值范围
7、是.故选:B.解析:B【分析】设,由是实数可得,即得,由此可求出.【详解】设,则,是实数,则,则,解得,故的实部取值范围是.故选:B.7A【分析】根据,利用复数的除法运算化简复数,再利用共扼复数的概念求解.【详解】因为,所以,复数的共扼复数是,故选:A解析:A【分析】根据,利用复数的除法运算化简复数,再利用共扼复数的概念求解.【详解】因为,所以,复数的共扼复数是,故选:A8D【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案.【详解】因为,所以,所以,故选:D.解析:D【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案.【详解】因为,所以,所以,故选:D.9B【
8、分析】化简,利用定义可得的虚部【详解】则的虚部等于故选:B解析:B【分析】化简,利用定义可得的虚部【详解】则的虚部等于故选:B10D【分析】根据复数的运算,先化简复数,再由复数的几何意义确定对应点的坐标,进而可得出结果.【详解】,则复数对应的点的坐标为,位于第四象限故选:D解析:D【分析】根据复数的运算,先化简复数,再由复数的几何意义确定对应点的坐标,进而可得出结果.【详解】,则复数对应的点的坐标为,位于第四象限故选:D11D【分析】先对化简,从而可求出共轭复数,再利用复数的几何意义可得答案【详解】解:因为,所以,所以共轭复数在复平面内的对应点位于第四象限,故选:D解析:D【分析】先对化简,从
9、而可求出共轭复数,再利用复数的几何意义可得答案【详解】解:因为,所以,所以共轭复数在复平面内的对应点位于第四象限,故选:D12A【分析】先利用复数的乘法运算法则化简,再利用共轭复数的定义求出a+bi,从而确定a,b的值,求出a+b【详解】,故选:A解析:A【分析】先利用复数的乘法运算法则化简,再利用共轭复数的定义求出a+bi,从而确定a,b的值,求出a+b【详解】,故选:A13D【分析】先化简,求出的值即得解.【详解】,所以.故选:D解析:D【分析】先化简,求出的值即得解.【详解】,所以.故选:D14C【分析】对的分子分母同乘以,再化简整理即可求解.【详解】,故选:C解析:C【分析】对的分子分
10、母同乘以,再化简整理即可求解.【详解】,故选:C15B【分析】首先求出,再根据复数的模的公式计算可得;【详解】解:因为,所以所以.故选:B.解析:B【分析】首先求出,再根据复数的模的公式计算可得;【详解】解:因为,所以所以.故选:B.二、多选题16AD【分析】A选项,设出复数,根据共轭复数的相关计算,即可求出结果;B选项,举出反例,根据复数模的计算公式,即可判断出结果;C选项,根据纯虚数的定义,可判断出结果;D选项,设出复数,根据题解析:AD【分析】A选项,设出复数,根据共轭复数的相关计算,即可求出结果;B选项,举出反例,根据复数模的计算公式,即可判断出结果;C选项,根据纯虚数的定义,可判断出
11、结果;D选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果.【详解】A选项,设,则其共轭复数为,则,所以,即;A正确;B选项,若,满足,但不为;B错;C选项,若复数表示纯虚数,需要实部为,即,但此时复数表示实数,故C错;D选项,设,则,所以,解得或,则或,所以其对应的点分别为或,所以对应点的在第一象限或第三象限;D正确.故选:AD.17AD【分析】因为复数Z在复平面上对应的向量,得到复数,再逐项判断.【详解】因为复数Z在复平面上对应的向量,所以,|z|=,故选:AD解析:AD【分析】因为复数Z在复平面上对应的向量,得到复数,再逐项判断.【详解】因为复数Z在复平面上对应的向量,所
12、以,|z|=,故选:AD18AC【分析】令,代入原式,解出的值,结合选项得出答案【详解】令,代入,得,解得,或,或,所以,或,或.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题解析:AC【分析】令,代入原式,解出的值,结合选项得出答案【详解】令,代入,得,解得,或,或,所以,或,或.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题19BC【分析】利用复数的除法求出复数,利用复数的概念与几何意义可判断各选项的正误.【详解】,所以,复数的虚部为,共轭复数为,复数在复平面对应的点在第四象限.故选:BD.【点睛】本题考解析:BC【分析】利用复数的除法求出复数,利用
13、复数的概念与几何意义可判断各选项的正误.【详解】,所以,复数的虚部为,共轭复数为,复数在复平面对应的点在第四象限.故选:BD.【点睛】本题考查复数的四则运算、虚部、模、共轭复数以及几何意义,考查计算能力,属于基础题.20BC【分析】由可得,得,可判断A选项,当虚部,时,可判断B选项,由复数的模计算和余弦的二倍角公式可判断C选项,由复数的运算得,的实部是,可判断D选项.【详解】因为,所以,所以,所以,所以A选解析:BC【分析】由可得,得,可判断A选项,当虚部,时,可判断B选项,由复数的模计算和余弦的二倍角公式可判断C选项,由复数的运算得,的实部是,可判断D选项.【详解】因为,所以,所以,所以,所
14、以A选项错误;当,时,复数是实数,故B选项正确;,故C选项正确:,的实部是,故D不正确.故选:BC【点睛】本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.21AD【分析】由求得判断A;设出,证明在满足时,不一定有判断B;举例说明C错误;由充分必要条件的判定说明D正确.【详解】若,则,故A正确;设,由,可得则,而不一定为0,故B错误;当时解析:AD【分析】由求得判断A;设出,证明在满足时,不一定有判断B;举例说明C错误;由充分必要条件的判定说明D正确.【详解】若,则,故A正确;设,由,可得则,而不一定为0,故B错误;当时为纯虚数,其实部和虚部不相等,故C错误
15、;若复数是虚数,则,即所以“”是“复数是虚数”的必要不充分条件,故D正确;故选:AD【点睛】本题考查的是复数的相关知识,考查了学生对基础知识的掌握情况,属于中档题.22ACD【分析】首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】选项A:为纯虚数,有可得,故正确选项B解析:ACD【分析】首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】选项A:为纯虚数,有可得,故正确选项B:在复平面内对应的点在第三象限,有解得,故错误选项C:时,
16、;时,即,它们互为充要条件,故正确选项D:时,有,即,故正确故选:ACD【点睛】本题考查了复数的运算及分类和概念,应用复数乘法运算求得复数,再根据复数的概念及性质、相等关系等确定参数的值或范围23ACD【分析】先利用题目条件可求得,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假【详解】由可得,所以,虚部为;因为,所以,故选:ACD【解析:ACD【分析】先利用题目条件可求得,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假【详解】由可得,所以,虚部为;因为,所以,故选:ACD【点睛】本题主要考查复数的有关概念的理解和运用,
17、复数的模的计算公式的应用,复数的四则运算法则的应用,考查学生的数学运算能力,属于基础题24ABC【分析】首先利用复数代数形式的乘除运算化简后得:,然后分别按照四个选项的要求逐一求解判断即可.【详解】因为,对于A:的虚部为,正确;对于B:模长,正确;对于C:因为,故为纯虚数,解析:ABC【分析】首先利用复数代数形式的乘除运算化简后得:,然后分别按照四个选项的要求逐一求解判断即可.【详解】因为,对于A:的虚部为,正确;对于B:模长,正确;对于C:因为,故为纯虚数,正确;对于D:的共轭复数为,错误.故选:ABC.【点睛】本题考查复数代数形式的乘除运算,考查复数的有关概念,考查逻辑思维能力和运算能力,
18、侧重考查对基础知识的理解和掌握,属于常考题.25AB【分析】利用复数相等可选A,利用虚数不能比较大小可选B,利用特值法可判断C错误,利用复数的运算性质可判断D错误【详解】对于选项A,且,根据复数相等的性质,则,故正确;对于选项B,解析:AB【分析】利用复数相等可选A,利用虚数不能比较大小可选B,利用特值法可判断C错误,利用复数的运算性质可判断D错误【详解】对于选项A,且,根据复数相等的性质,则,故正确;对于选项B,虚数不能比较大小,故正确;对于选项C,若复数,满足,则,故不正确;对于选项D,复数,故不正确;故选:AB【点睛】本题考查复数的相关概念,涉及复数的概念、复数相等、复数计算等知识,属于
19、基础题.26AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A选项的正误;解方程可判断B选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C选项的正误;利用基本初等函数的导数公式解析:AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A选项的正误;解方程可判断B选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C选项的正误;利用基本初等函数的导数公式可判断D选项的正误.综合可得出结论.【详解】对于A选项,若复数为纯虚数,则且,所以,是为纯虚数的必要不充分条件,A选项正确;对于B选项,解方程得,B选项错误;对于C选项,当时,若,则函数在区间内
20、单调递增,即“在区间内”“在区间内单调递增”.反之,取,当时,此时,函数在区间上单调递增,即“在区间内”“在区间内单调递增”.所以,“在区间内”是“在区间内单调递增”的充分不必要条件.C选项正确;对于D选项,D选项错误.故选:AC.【点睛】本题考查命题真假的判断,涉及充分条件与必要条件的判断、实系数方程的根以及导数的计算,考查推理能力与计算能力,属于中等题.27ACD【分析】由复数的模的意义可判断选项A,B;整理原式等于,也等于,即可判断选项C,D【详解】由复数的几何意义,知复数,分别对应复平面内的点与点,所以表示点与点之间的距离,故A说法正确,B解析:ACD【分析】由复数的模的意义可判断选项
21、A,B;整理原式等于,也等于,即可判断选项C,D【详解】由复数的几何意义,知复数,分别对应复平面内的点与点,所以表示点与点之间的距离,故A说法正确,B说法错误;,可表示点到原点的距离,故C说法正确;,可表示表示点到原点的距离,即坐标为的向量的模,故D说法正确,故选:ACD【点睛】本题考查复数的几何意义,考查复数的模28AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A和C正确;C中可取,进行判断;D中的必要不充分条件是.【详解】解:由复数乘法的运算律知,A正确;取,;,满足,但且不解析:AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A和C正确;C中
22、可取,进行判断;D中的必要不充分条件是.【详解】解:由复数乘法的运算律知,A正确;取,;,满足,但且不成立,B错误;由复数的模及共轭复数的概念知结论成立,C正确;由能推出,但推不出,因此的必要不充分条件是,D错误.故选:AC【点睛】本题主要考查复数乘法的运算律和复数的基本知识以及共轭复数的概念,属于基础题.29BC【分析】设,可得出,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设,则,则,若,则,若,则不为纯虚数,所以,“”是“为纯虚数”必要不充分解析:BC【分析】设,可得出,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出
23、结论.【详解】设,则,则,若,则,若,则不为纯虚数,所以,“”是“为纯虚数”必要不充分条件;若,即,可得,则为实数,“”是“为实数”的充要条件;,为虚数或实数,“”是“为实数”的必要不充分条件.故选:BC.【点睛】本题考查充分条件、必要条件的判断,同时也考查了共轭复数、复数的基本概念的应用,考查推理能力,属于基础题.30AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】,A正确;复数z在复平面内对应的点的坐标为,在第三象限,B不正确;z的共轭复数为,C正确;复数z在复平面内对解析:AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】,A正确;复数z在复平面内对应的点的坐标为,在第三象限,B不正确;z的共轭复数为,C正确;复数z在复平面内对应的点不在直线上,D不正确.故选:AC【点睛】本小题主要考查复数的有关知识,属于基础题.