导数求导练习题(DOC 9页).doc

上传人(卖家):2023DOC 文档编号:5754330 上传时间:2023-05-06 格式:DOC 页数:9 大小:170KB
下载 相关 举报
导数求导练习题(DOC 9页).doc_第1页
第1页 / 共9页
导数求导练习题(DOC 9页).doc_第2页
第2页 / 共9页
导数求导练习题(DOC 9页).doc_第3页
第3页 / 共9页
导数求导练习题(DOC 9页).doc_第4页
第4页 / 共9页
导数求导练习题(DOC 9页).doc_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、同步练习 1若f(x)=sincosx,则f()等于AsinBcosCsin+cosD2sin2f(x)=ax3+3x2+2,若f(1)=4,则a的值等于ABCD3函数y=sinx的导数为Ay=2sinx+cosxBy=+cosxCy=+cosxDy=cosx4函数y=x2cosx的导数为Ay=2xcosxx2sinxBy=2xcosx+x2sinxCy=x2cosx2xsinxDy=xcosxx2sinx5.若y=(2x2-3)(x2-4),则y= .6. 若y=3cosx-4sinx ,则y= .7与直线2x6y+1=0垂直,且与曲线y=x3+3x21相切的直线方程是_8质点运动方程是s=

2、t2(1+sint),则当t=时,瞬时速度为_9.求曲线y=x3+x2-1在点P(-1,-1)处的切线方程.同步练习1函数y=(a0)的导数为0,那么x等于AaBaCaDa22函数y=的导数为Ay=By=Cy=Dy=3.若则y= .4.若则y= .5.若则y= .6已知f(x)=,则f(x)=_7已知f(x)=,则f(x)=_8已知f(x)=,则f(x)=_9求过点(2,0)且与曲线y=相切的直线的方程10.质点的运动方程是求质点在时刻t=4时的速度. 同步练习 1函数y=的导数是A B C D2已知y=sin2x+sinx,那么y是A仅有最小值的奇函数 B既有最大值,又有最小值的偶函数C仅有

3、最大值的偶函数 D非奇非偶函数3函数y=sin3(3x+)的导数为A3sin2(3x+)cos(3x+) B9sin2(3x+)cos(3x+)C9sin2(3x+) D9sin2(3x+)cos(3x+)4.若y=(sinx-cosx,则y= .5. 若y=,则y= .6. 若y=sin3(4x+3),则y= .7函数y=(1+sin3x)3是由_两个函数复合而成8曲线y=sin3x在点P(,0)处切线的斜率为_9.求曲线处的切线方程.10. 求曲线处的切线方程.同步练习 1函数y=cos(sinx)的导数为Asin(sinx)cosxBsin(sinx)Csin(sinx)cosxDsin

4、(cosx)2函数y=cos2x+sin的导数为A2sin2x+B2sin2x+C2sin2x+D2sin2x3过曲线y=上点P(1,)且与过P点的切线夹角最大的直线的方程为A2y8x+7=0B2y+8x+7=0C2y+8x9=0D2y8x+9=04函数y=xsin(2x)cos(2x+)的导数是_5函数y=的导数为_6函数y=cos3的导数是_同步练习 1函数y=ln(32xx2)的导数为ABCD2函数y=lncos2x的导数为Atan2xB2tan2xC2tanxD2tan2x3函数y=的导数为A2xBCD4在曲线y=的切线中,经过原点的切线为_5函数y=log3cosx的导数为_6.函数

5、y=x2lnx的导数为 .7. 函数y=ln(lnx)的导数为 .8. 函数y=lg(1+cosx)的导数为 .9. 求函数y=ln的导数10. 求函数y=ln的导数12求函数y=ln(x)的导数同步练习 1下列求导数运算正确的是A(x+)=1+ B(log2x)=C(3x)=3xlog3e D(x2cosx)=2xsinx2函数y=(a0且a1),那么y为AlnaB2(lna)C2(x1)lnaD(x1)lna3函数y=sin32x的导数为A2(cos32x)32xln3B(ln3)32xcos32xCcos32xD32xcos32x4设y=,则y=_5函数y=的导数为y=_6曲线y=exelnx在点(e,1)处的切线方程为_7.求函数y=e2xlnx 的导数.8求函数y=xx(x0)的导数

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 待归类文档
版权提示 | 免责声明

1,本文(导数求导练习题(DOC 9页).doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|