函数解析式求法总结及练习题(DOC 6页).doc

上传人(卖家):2023DOC 文档编号:5755571 上传时间:2023-05-06 格式:DOC 页数:6 大小:327.50KB
下载 相关 举报
函数解析式求法总结及练习题(DOC 6页).doc_第1页
第1页 / 共6页
函数解析式求法总结及练习题(DOC 6页).doc_第2页
第2页 / 共6页
函数解析式求法总结及练习题(DOC 6页).doc_第3页
第3页 / 共6页
函数解析式求法总结及练习题(DOC 6页).doc_第4页
第4页 / 共6页
函数解析式求法总结及练习题(DOC 6页).doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、函 数 解 析 式 的 七 种 求 法一、 待定系数法:在已知函数解析式的构造时,可用待定系数法它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。例1 设是一次函数,且,求解:设,则, 二、配凑法:已知复合函数的表达式,求的解析式,的表达式容易配成的运算形式时,常用配凑法但要注意所求函数的定义域不是原复合函数的定义域,而是的值域 例2 已知 ,求 的解析式解:, , 三、换元法:已知复合函数的表达式时,还可以用换元法求的解析式用来处理不知道所求函数的类型,且函数的

2、变量易于用另一个变量表示的问题。它主要适用于已知复合函数的解析式,但使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。例3 已知,求解:令,则, , , 四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法例4已知:函数的图象关于点对称,求的解析式解:设为上任一点,且为关于点的对称点 则 ,解得: ,点在上 , 把代入得:整理得, 五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式例5 设求解 显然将换成,得: 解 联立的方程组,得:例6 设为偶函数,为奇函数,又试求的解析式解 ,又 ,用替换得:,

3、即 ,解 联立的方程组,得, 小结:消元法适用于自变量的对称规律。互为倒数,如f(x)、;互为相反数,如f(x)、f(-x),通过对称代换构造一个对称方程组,解方程组即得f(x)的解析式。六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式 例7 已知:,对于任意实数x、y,等式恒成立,求解对于任意实数x、y,等式恒成立,不妨令,则有再令 得函数解析式为:例5:已知求。解析:令则 令 则小结:所给函数方程含有2个变量时,可对这2个变量交替用特殊值代入,或使这2个变量相等代入,再用已知条件,可求出未知的函数,至于取什

4、么特殊值,根据题目特征而定。通过取某些特殊值代入题设中等式,可使问题具体化、简单化,从而顺利地找出规律,求出函数的解析式。七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式例8 设是定义在上的函数,满足,对任意的N 都有,求 解 ,不妨令,得:,又 令式中的x1,2,n1得:将上述各式相加得:, , 三、练习(一)换元法1已知f(3x+1)=4x+3, 求f(x)的解析式. 2若,求.(二)配变量法3已知, 求的解析式. 4若,求.(三)待定系数法5设是一元二次函数, ,且,求与.6设二次函数满足,且图象在y轴上截距为1,在x轴

5、上截得的线段长为,求的表达式.(四)解方程组法 7设函数是定义(,0)(0,+ )在上的函数,且满足关系式,求的解析式.8(1)若,求. (2)若f(x)+f(1-x)=1+x,求f(x).(五)特殊值代入法9若,且,求值.10已知:,对于任意实数x、y,等式恒成立,求(六)利用给定的特性求解析式.11设是偶函数,当x0时, ,求当x0时,的表达式.12对xR, 满足,且当x1,0时, 求当x9,10时的表达式.例6、已知函数对于一切实数都有成立,且。(1)求的值;(2)求的解析式。练 习求函数的解析式例1已知f (x)= ,求f ()的解析式 ( 代入法 / 拼凑法 )变式1已知f (x)= , 求f ()的解析式 变式2已知f (x+1),求f (x)的解析式 例2若f f (x)4x3,求一次函数f (x)的解析式 ( 待定系数法 )变式1已知f (x)是二次函数,且,求f (x)例3已知f (x)2 f (x)x ,求函数f (x)的解析式 ( 消去法/ 方程组法 )变式1已知2 f (x) f (x)x1 ,求函数f (x)的解析式变式2已知2 f (x)f 3x ,求函数f (x)的解析式例4设对任意数x,y均有,求f(x)的解析式 ( 赋值法 / 特殊值法)变式1已知对一切x,yR,都成立,且f(0)=1, 求f(x)的解析式

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 待归类文档
版权提示 | 免责声明

1,本文(函数解析式求法总结及练习题(DOC 6页).doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|