1、离心率的专题复习椭圆的离心率,双曲线的离心率,抛物线的离心率一、直接求出、,求解已知圆锥曲线的标准方程或、易求时,可利用率心率公式来解决。例1:已知、是双曲线()的两焦点,以线段为边作正三角形,若边的中点在双曲线上,则双曲线的离心率是( )A. B. C. D. 变式练习1:若椭圆经过原点,且焦点为、,则其离心率为( )A. B. C. D. 变式练习2:点P(-3,1)在椭圆()的左准线上,过点且方向为的光线,经直线反射后通过椭圆的左焦点,则这个椭圆的离心率为( )A B C D 变式练习3:2016全国卷 已知O为坐标原点,F是椭圆C ()的左焦点,A,B分别为C的左、右顶点P为C上一点,
2、且PFx轴过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A. B. C. D. 二、 构造、的齐次式,解出根据题设条件,借助、之间的关系,构造、的关系(特别是齐二次式),进而得到关于的一元方程,从而解得离心率。例2:设双曲线()的半焦距为,直线过,两点.已知原点到直线的距离为,则双曲线的离心率为( )A. B. C. D. 变式练习1:双曲线虚轴的一个端点为,两个焦点为、,则双曲线的离心率为( )A B C D 变式练习2:【2017课标3,文11】已知椭圆C:,(ab0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线相切,则C的
3、离心率为( )A B C D变式练习3:2016全国卷文 直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A. B. C. D. 三、 采用离心率的定义以及椭圆的定义求解例3:设椭圆的两个焦点分别为、,过作椭圆长轴的垂线交椭圆于点,若为等腰直角三角形,则椭圆的离心率是_。变式练习1已知长方形ABCD,AB4,BC3,则以A、B为焦点,且过C、D两点的椭圆的离心率为 . 变式练习2已知F1、F2是双曲线的两焦点,以线段F1F2为边作正三角形MF1F2,若边MF1的中点在双曲线上,则双曲线的离心率是 . 变式练习3如图,和分别是双曲线的两个焦点,和是以为
4、圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为 . 四、根据圆锥曲线的统一定义求解例4:设椭圆()的右焦点为,右准线为,若过且垂直于轴的弦的长等于点到的距离,则椭圆的离心率是.变式练习1:在给定椭圆中,过焦点且垂直于长轴的弦长为,焦点到相应准线的距离为,则该椭圆的离心率为( )A B C D 变式练习2:已知双曲线的右焦点为,过且斜率为的直线交于两点,若,则的离心率为 . 变式练习3:已知椭圆C:()的离心率为,过右焦点且斜率为()的直线交于两点,若,则 = . 参考公式: 五、构建关于的不等式,求的取值范围:一般来说,求椭圆或双曲线的离心率的取值范围,通常可以从两个方面来研究:一是考虑几何的大小,例如线段的长度、角的大小等;二是通过设椭圆(或双曲线)点的坐标,利用椭圆或双曲线本身的范围,列出不等式(一)基本问题例5椭圆的焦点为,两条准线与轴的交点分别为,若,则该椭圆离心率的取值范围是 变式练习1:设,则双曲线的离心率的取值范围是 (二) 数形结合例6已知椭圆的焦点分别为F1,F2,若该椭圆上存在一点P,使得F1PF260,则椭圆离心率的取值范围是 .变式练习1:已知、是椭圆的两个焦点,满足的点总在椭圆内部,则椭圆离心率的取值范围是 .