1、 高二年级数学试卷第 1 页,共 4 页 高二年级数学试卷第 2 页,共 4 页 仙桃荣怀英才中学 2023 年春季学期高二第一次诊断考试 数学试题 考试时间:120 分钟 分值:150 分 命题人:左成 一、选择题一、选择题(每小题每小题 5 5 分分,共共 8 8 小题小题 4040 分分)1、直线,的斜率是方程的两根,则与的位置关系是()A.平行 B.垂直 C.相交但不垂直 D.重合 2、若函数的导函数的图象关于轴对称,则的解析式可能为()A.B.C.D.3、已知圆 与圆的公共弦所在直线恒过点,则点的坐标为()A.B.C.D.4、各项为正的等比数列满足,则与的等比中项为()A.B.C.D
2、.5、已知椭圆的右焦点,是椭圆上任意一点,点,则的周长最大值为()A.B.C.D.6、设为正数,若圆关于直线对称,则的最小值为()A.B.C.D.7、蹴鞠(如图所示),又名蹴球,蹴圆,筑球,踢圆等,蹴有用脚蹴、踢、蹋的含义,鞠最早系外包皮革、内实米糠的球因而蹴鞠就是指古人以脚蹴,蹋、踢皮球的活动,类似今日的足球,年月日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗产名录,已知某鞠的表面上有四个点,满足,则该鞠的表面积为()A.B.C.D.8、已知函数,且,则,的大小为()A.B.C.D.二、多选题二、多选题(每小题每小题 5 5 分分,共共 4 4 小题小题 2020 分分)
3、9、已知定义在上的函数,其导函数的大致图象如图所示,则下列叙述不正确的是()A.B.函数在上递增,在上递减 C.函数的极值点为,D.函数的极大值为 10、已知曲线方程为,则()A.曲线可能是圆 B.曲线是椭圆的充要条件是 C.若,则曲线一定是双曲线 D.若,则曲线的离心率 11、大衍数列,来源于乾坤谱中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理,数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,它是中华传统文化中隐藏着的世界数学史上第一道数列题目,该数列从第一项起依次是,则()A.数列第项为 B.数列第项为 C.是数列第项 D.不是数列中的项 12、如
4、图,正方体的棱长为,线段上有两个动点,且,则下列结论中错误的是()A.B.平面 C.三棱锥的体积为定值 D.的面积与的面积相等 三、填空题三、填空题(每小题每小题 5 5 分分,共共 4 4 小题小题 2020 分分)13、已知抛物线:的焦点为,过点的直线 与交于,两点,若为坐标原点,的重心为,则_.14、已知等边,点是边上靠近点的三等分点,则取最小值时对应的实数 的值为_.15、若在上是减函数,则实数 的取值范围是_.16、已知函数,若数列满足,且是递增数列,则实数 的取值范围是_.高二年级数学试卷第 3 页,共 4 页 高二年级数学试卷第 4 页,共 4 页 四、解答题四、解答题(第第 1
5、717 题题 1010 分分,第第 1818 题题 1212 分分,第第 1919 题题 1212 分分,第第 2020 题题 1212 分分,第第 2121 题题 1212 分分,第第 2222 题题 1212 分分,共共 6 6 小题小题 7070分分)17、已知数列的前项和.(1)求数列的通项公式;(2)令,求.18、四棱锥中,平面,四边形为菱形,为的中点.(1)求证:平面平面;(2)求与平面所成的角的正切值;19、已知函数,其中.(1)当时,求的极值;(2)当时,求的零点个数.20、已知椭圆:的左、右焦点分别为,点,分别为的上顶点与右顶点,的周长为,且.(1)求的标准方程;(2)若直线:与交于,两点,记点关于轴的对称点为,求证:直线过定点.21、设函数.求函数的极值;若在时恒成立,求 的取值范围.22、已知直线与椭圆相交于,两点.(1)若椭圆的离心率为,焦距为,求线段的长.(2)若(其中为坐标原点),当椭圆的离心率时,求椭圆的长轴长的最大值.