1、1.2排列与组合1.2.1排列第1课时排列及排列数公式学习目标:1.理解排列的概念,能正确写出一些简单问题的所有排列(重点)2.会用排列数公式进行求值和证明(难点)教材整理1排列的概念阅读教材P9,完成下列问题1一般地,从n个不同元素中任取m(mn)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列2两个排列相同的含义为:组成排列的元素相同,并且元素的排列顺序也相同判断(正确的打“”,错误的打“”)(1)两个排列的元素相同,则这两个排列是相同的排列()(2)从六名学生中选三名学生参加数学、物理、化学竞赛,共有多少种选法属于排列问题()(3)有十二名学生参加植树活动,要求
2、三人一组,共有多少种分组方案属于排列问题()(4)从3,5,7,9中任取两个数进行指数运算,可以得到多少个幂属于排列问题()(5)从1,2,3,4中任取两个数作为点的坐标,可以得到多少个点属于排列问题()【解析】(1)因为相同的两个排列不仅元素相同,而且元素的排列顺序相同(2)因为三名学生参赛的科目不同为不同的选法,每种选法与“顺序”有关,属于排列问题(3)因为分组之后,各组与顺序无关,故不属于排列问题(4)因为任取的两个数进行指数运算,底数不同、指数不同,结果不同结果与顺序有关,故属于排列问题(5)因为纵、横坐标不同,表示不同的点,故属于排列问题【答案】(1)(2)(3)(4)(5)教材整理
3、2排列数与排列数公式阅读教材P10P11,完成下列问题排列数定义及表示从n个不同元素中取出m(mn)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A表示全排列的概念n个不同元素全部取出的一个排列阶乘的概念把n(n1)21记作n!,读作:n的阶乘排列数公式An(n1)(n2)(nm1)阶乘式A(n,mN,mn)特殊情况An!,A1,0!11A_,A_.【解析】A4312;A3216.【答案】1262._.【解析】.【答案】3由1,2,3这三个数字组成的三位数分别是_【解析】用树形图表示为由“树形图”可知组成的三位数为123,132,213,231,312,321,共6个
4、【答案】123,132,213,231,312,321排列的概念【例1】判断下列问题是否为排列问题(1)北京、上海、天津三个民航站之间的直达航线的飞机票的价格(假设来回的票价相同);(2)选2个小组分别去植树和种菜;(3)选2个小组去种菜;(4)选10人组成一个学习小组;(5)选3个人分别担任班长、学习委员、生活委员;(6)某班40名学生在假期相互通信【精彩点拨】判断是否为排列问题关键是选出的元素在被安排时,是否与顺序有关若与顺序有关,就是排列问题,否则就不是排列问题【解】(1)中票价只有三种,虽然机票是不同的,但票价是一样的,不存在顺序问题,所以不是排列问题(2)植树和种菜是不同的,存在顺序
5、问题,属于排列问题(3)(4)不存在顺序问题,不属于排列问题(5)中每个人的职务不同,例如甲当班长或当学习委员是不同的,存在顺序问题,属于排列问题(6)A给B写信与B给A写信是不同的,所以存在着顺序问题,属于排列问题所以在上述各题中,(2)(5)(6)属于排列问题1解决本题的关键有两点:一是“取出元素不重复”,二是“与顺序有关”2判断一个具体问题是否为排列问题,就看取出元素后排列是有序的还是无序的,而检验它是否有序的依据就是变换元素的“位置”(这里的“位置”应视具体问题的性质和条件来决定),看其结果是否有变化,有变化就是排列问题,无变化就不是排列问题1判断下列问题是否是排列问题(1)从1到10
6、十个自然数中任取两个数组成直角坐标平面内的点的坐标,可得多少个不同的点的坐标?(2)从10名同学中任抽两名同学去学校开座谈会,有多少种不同的抽取方法?(3)某商场有四个大门,若从一个门进去,购买物品后再从另一个门出来,不同的出入方式共有多少种【解】(1)由于取出的两数组成点的坐标与哪一个数作横坐标,哪一个数作纵坐标的顺序有关,所以这是一个排列问题(2)因为从10名同学中抽取两人去学校开座谈会的方式不用考虑两人的顺序,所以这不是排列问题(3)因为从一门进,从另一门出是有顺序的,所以是排列问题综上,(1)、(3)是排列问题,(2)不是排列问题.排列的列举问题【例2】写出下列问题的所有排列(1)从1
7、,2,3,4四个数字中任取两个数字组成两位数,共有多少个不同的两位数?(2)写出从4个元素a,b,c,d中任取3个元素的所有排列【精彩点拨】(1)直接列举数字(2)先画树形图,再结合树形图写出【解】(1)所有两位数是12,21,13,31,14,41,23,32,24,42,34,43,共有12个不同的两位数(2)由题意作树形图,如图故所有的排列为:abc,abd,acb,acd,adb,adc,bac,bad,bca,bcd,bda,bdc,cab,cad,cba,cbd,cda,cdb,dab,dac,dba,dbc,dca,dcb,共有24个在排列个数不多的情况下,树形图是一种比较有效的
8、表示方式.在操作中先将元素按一定顺序排出,然后以先安排哪个元素为分类标准进行分类,在每一类中再按余下的元素在前面元素不变的情况下确定第二个元素,再按此元素分类,依次进行,直到完成一个排列,这样能不重不漏,然后按树形图写出排列.2(1)北京、广州、南京、天津4个城市相互通航,应该有_种机票(2)A,B,C,D四名同学排成一排照相,要求自左向右,A不排第一,B不排第四,共有_种不同的排列方法【解析】(1)列出每一个起点和终点情况,如图所示故符合题意的机票种类有:北京广州,北京南京,北京天津,广州南京、广州天津、广州北京,南京天津,南京北京,南京广州,天津北京,天津广州,天津南京,共12种(2)因为
9、A不排第一,排第一位的情况有3类(可从B,C,D中任选一人排),而此时兼顾分析B的排法,列树形图如图所以符合题意的所有排列是:BADC,BACD,BCAD,BCDA,BDAC,BDCA,CABD,CBAD,CBDA,CDBA,DABC,DBAC,DBCA,DCBA共14种【答案】(1)12(2)14排列数公式的推导及应用探究问题1两个同学从写有数字1,2,3,4的卡片中选取卡片进行组数字游戏从这4个数字中选出2个或3个分别能构成多少个无重复数字的两位数或三位数?【提示】从这4个数字中选出2个能构成A4312个无重复数字的两位数;若选出3个能构成A43224个无重复数字的三位数2由探究1知A43
10、12,A43224,你能否得出A的意义和A的值?【提示】A的意义:假定有排好顺序的2个空位,从n个元素a1,a2,an中任取2个元素去填空,一个空位填一个元素,每一种填法就得到一个排列;反过来,任一个排列总可以由这样的一种填法得到,因此,所有不同的填法的种数就是排列数A.由分步乘法计数原理知完成上述填空共有n(n1)种填法,所以An(n1)3你能写出A的值吗?有什么特征?若mn呢?【提示】An(n1)(n2)(nm1)(m,nN,mn)(1)公式特征:第一个因数是n,后面每一个因数比它前面一个少1,最后一个因数是nm1,共有m个因数;(2)全排列:当nm时,即n个不同元素全部取出的一个排列全排
11、列数:An(n1)(n2)21n!(叫做n的阶乘)另外,我们规定0!1.所以An(n1)(n2)(nm1).【例3】(1)计算:;(2)证明:AAmA.【精彩点拨】第(1)题可直接运用排列数公式,也可采用阶乘式;第(2)题首先分析各项的关系,利用A进行变形推导【解】(1)法一:.法二:.(2)AAmmA,AA mA.排列数的计算方法1排列数的计算主要是利用排列数的乘积公式进行,应用时注意:连续正整数的积可以写成某个排列数,其中最大的是排列元素的总个数,而正整数(因式)的个数是选取元素的个数,这是排列数公式的逆用2应用排列数公式的阶乘形式时,一般写出它们的式子后,再提取公因式,然后计算,这样往往
12、会减少运算量3求3A4A中的x.【解】原方程3A4A可化为,即,化简,得x219x780,解得x16,x213.由题意知解得x8.所以原方程的解为x6.1从1,2,3,4四个数字中,任选两个数做加、减、乘、除运算,分别计算它们的结果,在这些问题中,有几种运算可以看作排列问题()A1B2C3D4【解析】因为加法和乘法满足交换律,所以选出两个数做加法和乘法时,结果与两数字位置无关,故不是排列问题而减法、除法与两数字的位置有关,故是排列问题【答案】B2456(n1)n等于()AA BACn!4! DA【解析】456(n1)n中共有n41n3个因式,最大数为n,最小数为4,故456(n1)nA.【答案
13、】D35本不同的课外读物分给5位同学,每人一本,则不同的分配方法有_种【解析】利用排列的概念可知不同的分配方法有A120种【答案】1204A6A5A_.【解析】原式AAAA54321120.【答案】1205将玫瑰花、月季花、莲花各一束分别送给甲、乙、丙三人,每人一束,共有多少种不同的分法?请将它们列出来【解】按分步乘法计数原理的步骤:第一步,分给甲,有3种分法;第二步,分给乙,有2种分法;第三步,分给丙,有1种分法故共有3216种不同的分法列出这6种分法,如下:甲乙丙玫瑰花月季花莲花玫瑰花莲花月季花月季花玫瑰花莲花月季花莲花玫瑰花莲花玫瑰花月季花莲花月季花玫瑰花课时分层作业(三)排列及排列数公
14、式(建议用时:45分钟)基础达标练一、选择题1下列问题属于排列问题的是()从10个人中选2人分别去种树和扫地;从10个人中选2人去扫地;从班上30名男生中选出5人组成一个篮球队;从数字5,6,7,8中任取两个不同的数作logab中的底数与真数ABC D【解析】根据排列的概念知是排列问题【答案】A2从2,3,5,7四个数中任选两个分别相除,则得到的结果有()A6个 B10个C12个 D16个【解析】符合题意的商有A4312个【答案】C3某段铁路所有车站共发行132种普通车票,那么这段铁路共有的车站数是()A8B12 C16D24【解析】设车站数为n,则A132,n(n1)132,n12.【答案】
15、B4下列各式中与排列数A相等的是()A.Bn(n1)(n2)(nm)C.DAA【解析】A,而AAn,AAA.【答案】D5不等式An7的解集为()An|1n5 B1,2,3,4C3,4 D4【解析】由An7,得(n1)(n2)n7,即1n5,又因为nN且n12,所以n3,4.故选C.【答案】C二、填空题6集合Px|xA,mN,则集合P中共有_个元素【解析】因为mN,且m4,所以P中的元素为A4,A12,AA24,即集合P中有3个元素【答案】37从甲、乙、丙三人中选两人站成一排的所有站法为_(填序号)甲乙,乙甲,甲丙,丙甲;甲乙丙,乙丙甲;甲乙,甲丙,乙甲,乙丙,丙甲,丙乙;甲乙,甲丙,乙丙【解析
16、】这是一个排列问题,与顺序有关,任意两人对应的是两种站法,故正确【答案】8如果A151413121110,那么n_,m_.【解析】151413121110A,故n15,m6.【答案】156三、解答题9下列问题中哪些是排列问题?(1)5名学生中抽2名学生开会;(2)5名学生中选2名做正、副组长;(3)从2,3,5,7,11中任取两个数相乘;(4)从2,3,5,7,11中任取两个数相除;(5)6位同学互通一次电话;(6)6位同学互通一封信;(7)以圆上的10个点为端点作弦;(8)以圆上的10个点中的某点为起点,作过另一点的射线【解】(2)(4)(6)(8)都与顺序有关,属于排列;其他问题则不是排列
17、10证明:AkAA.【证明】左边k,右边A,所以AkAA.能力提升练1若SAAAAA,则S的个位数字是()A8 B5C3 D0【解析】因为当n5时,A的个位数是0,故S的个位数取决于前四个排列数,又AAAA33,所以S的个位数字是3.【答案】C2若aN,且a20,则(27a)(28a)(34a)等于()AA BACA DA【解析】A(27a)(28a)(34a)【答案】D3有4名司机,4名售票员要分配到4辆汽车上,使每辆汽车上有一名司机和一名售票员,则可能的分配方法有_种【解析】司机、售票员各有A种安排方法,由分步乘法计数原理知共有AA种不同的安排方法【答案】5764沪宁铁路线上有六个大站:上海、苏州、无锡、常州、镇江、南京,铁路部门应为沪宁线上的这六个大站准备(这六个大站间)多少种不同的火车票?【解】对于两个大站A和B,从A到B的火车票与从B到A的火车票不同,因为每张车票对应于一个起点站和一个终点站因此,每张火车票对应于从6个不同元素(大站)中取出2个元素(起点站和终点站)的一种排列所以问题归结为从6个不同元素中取出2个不同元素的排列数A6530.故一共需要为这六个大站准备30种不同的火车票