间接证明.ppt

上传人(卖家):hyngb9260 文档编号:5835434 上传时间:2023-05-11 格式:PPT 页数:13 大小:227KB
下载 相关 举报
间接证明.ppt_第1页
第1页 / 共13页
间接证明.ppt_第2页
第2页 / 共13页
间接证明.ppt_第3页
第3页 / 共13页
间接证明.ppt_第4页
第4页 / 共13页
间接证明.ppt_第5页
第5页 / 共13页
点击查看更多>>
资源描述

1、2.2.2 间接证明间接证明(反证法反证法)直接证明:直接证明:(1)综合法综合法(2)分析法分析法由因导果由因导果执果索因执果索因已知条件已知条件结论结论已知条件已知条件结论结论pq条件结论 将将9 9个球分别染成红色或白色。那么个球分别染成红色或白色。那么无论怎样染,至少有无论怎样染,至少有5 5个球是同色的。你个球是同色的。你能证明这个结论吗?能证明这个结论吗?引例:引例:间接证明:间接证明:不是直接从原命题的条件逐步不是直接从原命题的条件逐步推得命题成立的证明方法。推得命题成立的证明方法。反证法反证法是一种常用的是一种常用的间接证明间接证明的方法。的方法。一般地,假设原命题不成立,一般

2、地,假设原命题不成立,经过正确经过正确的推理,的推理,最后得出矛盾。最后得出矛盾。因此说明假设错因此说明假设错误,从而证明了原命题成立,误,从而证明了原命题成立,这样的证明这样的证明方法叫做方法叫做反证法反证法(归谬法)。(归谬法)。其过程包括:其过程包括:反设反设假设命题的结论不成立;假设命题的结论不成立;存真存真由矛盾结果,断定反设不真,从由矛盾结果,断定反设不真,从而肯定原结论成立。而肯定原结论成立。归谬归谬从假设出发,经过一系列正确的从假设出发,经过一系列正确的推理,得出推理,得出矛盾矛盾;qppq归缪矛盾:归缪矛盾:(1 1)与已知条件矛盾;)与已知条件矛盾;(2 2)与已有公理、定

3、理、定义矛盾;)与已有公理、定理、定义矛盾;(3 3)自相矛盾。)自相矛盾。反证法:反证法:反设反设归谬归谬存真存真例例1 1、已知:一个整数的平方能被、已知:一个整数的平方能被2 2整除,整除,求证:这个数是偶数。求证:这个数是偶数。证明:假设证明:假设a a不是偶数,不是偶数,则则a a是奇数,不妨设是奇数,不妨设a=2m+1(ma=2m+1(m是整数是整数)a a2 2=(2m+1)=(2m+1)2 2=4m=4m2 2+4m+1=4m(m+1)+1+4m+1=4m(m+1)+1 a a2 2是奇数,与已知矛盾。是奇数,与已知矛盾。假设不成立,所以假设不成立,所以a a是偶数。是偶数。例

4、例2 2、用反证法证明:、用反证法证明:如果如果ab0ab0,那么,那么a a b b证:假设 a b不成立,则 a b证:假设 a b不成立,则 a b若 a=b,则a=b,若 a=b,则a=b,与已知a b矛盾,与已知a b矛盾,若 a b,则a b,若 a b,则a b矛盾,与已知a b矛盾,故假设不成立,结论 a b成立。故假设不成立,结论 a b成立。例例3 3、已知、已知a0a0,求证关于,求证关于x x的方程的方程ax=bax=b有且有且只有一个根。只有一个根。证:假设方程ax+b=0(a 0)至少存在两个根,证:假设方程ax+b=0(a 0)至少存在两个根,1 12 21 12

5、 2不不妨妨设设其其中中的的两两根根分分别别为为x x,x x 且且x x x x1212则ax=b,ax=b则ax=b,ax=b1212ax=axax=ax1 12 2 a ax x-a ax x=0 01 12 2 a a(x x-x x)=0 012121212 x x,x-x 0 x x,x-x 0 a=0 a=0 与已知a 0矛盾,与已知a 0矛盾,故假设不成立,结论成立。故假设不成立,结论成立。P P例例4 4、求证:圆的两条不全是直径的相交、求证:圆的两条不全是直径的相交弦不能互相平分弦不能互相平分.已知:在已知:在OO中中,弦弦ABAB、CDCD相交于相交于P P,且,且ABA

6、B、CDCD不全是直径不全是直径 求证:求证:ABAB、CDCD不能互相平分。不能互相平分。A AB BC CD DO O 例例5 5、求证:、求证:是无理数。是无理数。2 2证:假设 2是有理数,证:假设 2是有理数,m m则则存存在在互互质质的的整整数数m m,n n使使得得2 2=,n n m=2n m=2n2222 m=2n m=2n2 2m m 是是偶偶数数,从从而而m m必必是是偶偶数数,故故设设m m=2 2k k(k kN N)22222222从而有4k=2n,即n=2k从而有4k=2n,即n=2k2 2n 也是偶数,n 也是偶数,这与m,n互质矛盾!这与m,n互质矛盾!所以假

7、设不成立,2是有理数成立。所以假设不成立,2是有理数成立。例例6.6.求证:正弦函数没有比求证:正弦函数没有比 小的正周期小的正周期.2 (4)(4)结论为结论为“唯一唯一”类的命题。类的命题。正难则反正难则反!应用反证法的情形:应用反证法的情形:(1)(1)直接证明困难直接证明困难;(2)(2)需分成很多类进行讨论;需分成很多类进行讨论;(3)(3)结论为结论为“至少至少”、“至多至多”、“有无穷多个有无穷多个”这一类的命题;这一类的命题;推理推理 合情推理合情推理 演绎推理演绎推理(归纳、类比)(归纳、类比)(三段论)(三段论)证明证明 直接证明直接证明 间接证明间接证明(分析法、综合法)(分析法、综合法)(反证法)(反证法)数学数学公理化思想公理化思想

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(间接证明.ppt)为本站会员(hyngb9260)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|