1、 厦门市国祺中学初二数学导学案 编制人:柯永钦 审核人:张昆12.1全等三角形学习目标 1知道什么是全等形、全等三角形及全等三角形的对应元素; 2知道全等三角形的性质,能用符号正确地表示两个三角形全等; 3能熟练找出两个全等三角形的对应角、对应边学习重点 全等三角形的性质学习难点 找全等三角形的对应边、对应角学习方法:自主学习与小组合作探究学习过程:一获取概念:阅读教材P31页内容,完成下列问题:(1)能够完全重合的两个图形叫做全等形,则_ 叫做全等三角形。(2)全等三角形的对应顶点: 、对应角: 、对应边: 。 (3)“全等”符号: 读作“全等于”(4)全等三角形的性质: (5)如下图:这两
2、个三角形是完全重合的,则ABC A1B1C1.点A与 A点是对应顶点;点B与 点 是对应顶点;点C与 点 是对应顶点. 对应边: 对应角: 。 二 观察与思考:1.将ABC沿直线BC平移得DEF;将ABC沿BC翻折180得到DBC;将ABC旋转180得AED议一议:各图中的两个三角形全等吗?即 DEF,ABC ,ABC (书写时对应顶点字母写在对应的位置上)启示:一个图形经过平移、翻折、旋转后,位置变化了,但 、 都没有改变,所以平移、翻折、旋转前后的图形,这也是我们通过运动的方法寻求全等的一种策略2 . 说出乙、丙图中两个全等三角形的对应元素。三、自学检测 1、如图1,OCAOBD,C和B,
3、A和D是对应顶点,则这两个三角形中相等的边 。相等的角 。 2如图2,已知ABEACD,ADE=AED,B=C,指出其它的对应角 对应边:AB AE BE 3.已知如图3,ABCADE,试找出对应边 对应角 4.如图4,AB与DB,AC与DE是对应边,已知:,求。解:A+B+BCA=180 ( ),( ) BCA= ( ) BED=BCA= ( )5.完成教材P91练习1、2 122 三角形全等的判定(一)学习目标 1三角形全等的“边角边”的条件 2经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程 3掌握三角形全等的“SS”条件 4能运用“SS”证明简单的三角形全等问题学习重
4、点: 三角形全等的条件学习难点: 寻求三角形全等的条件学习方法:自主学习与小组合作探究学习过程:一、:温故知新1怎样的两个三角形是全等三角形? 2全等三角形的性质?二、读一读,想一想,画一画,议一议1只给一个条件(一组对应边相等或一组对应角相等),画出的两个三角形一定全等吗?2给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?阅读:P35 操作 总结:通过我们画图 可以发现只给一个条件(一组对应边相等或一组对应角相等),画出的两个三角形不一定全等;给出两个条件画出的两个三角形也不一定全等,按这些条件画出的三角形都不能保证一定全等 给出三个条件画三角形,你能说出有几种可
5、能的情况吗? 归纳:有四种可能即:三内角、三条边、两边一内角、两内有一边 在刚才的探索过程中,我们已经发现三内角不能保证三角形全等下面我们就来逐一探索其余的三种情况 3、如图2,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,ABO和CDO是否能完全重合呢?不难看出,这两个三角形有三对元素是相等的:AOCO,AOB COD,BODO如果把OAB绕着O点顺时针方向旋转,因为OAOC,所以可以使OA与OC重合;又因为AOB COD, OBOD,所以点B与点D重合这样ABO与CDO就完全重合由此,我们得到启发:判定两个三角形全等,不需要三条边对应相等和三个角对应相等而且,从上面的例子可以引
6、起我们猜想:如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等4上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:(1)读句画图:画DAE45,在AD、AE上分别取 B、C,使 AB3.1cm, AC2.8cm连结BC,得ABC按上述画法再画一个ABC(2)如果把ABC剪下来放到ABC上,想一想ABC与ABC是否能够完全重合?5“边角边”公理有两边和它们的夹角对应相等的两个三角形全等(简称“边角边”或“SAS”)书写格式: 在ABC和 A1B1C1中 ABC A1B1C1(SAS) 用上面的规律可以判断两个三角形全等判断两个三角形全等的推理过程,叫做证明三角形全等所以“SAS”
7、是证明三角形全等的一个依据三、小组合作学习(1)如图3,已知ADBC,ADCB,要用边角边公理证明ABCCDA,需要三个条件,这三个条件中,已具有两个条件,一是ADCB(已知),二是_;还需要一个条件_(这个条件可以证得吗?)(2)如图4,已知ABAC,ADAE,12,要用边角边公理证明ABDACE,需要满足的三个条件中,已具有两个条件:_还需要一个条件_(这个条件可以证得吗?)四、阅读例题: P36 例1 例2深化提高1已知:如图,ABAC,F、E分别是AB、AC的中点求证:ABEACF2已知:点A、F、E、C在同一条直线上, AFCE,BEDF,BEDF求证:ABECDF 3、已知: AD
8、BC,AD CB,AE=CF(图3)求证:ADFCBE 122 三角形全等的判定(二)学习目标 1掌握三角形全等的“角边角”条件 2能运用全等三角形的条件,解决简单的推理证明问题学习重点 已知两角一边的三角形全等探究学习难点 灵活运用三角形全等条件证明学习方法:自主学习与小组合作探究学习过程: 一温故知新 1(1)三角形中已知三个元素,包括哪几种情况? 三个角、三个边、两边一角、两角一边 (2)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?二种:定义_;“SAS”公理_ 2在三角形中,已知三个元素的四种情况中,我们研究了二种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢
9、? 3.三角形中已知两角一边有几种可能? 两角和它们的夹边 两角和其中一角的对边 二、阅读教材P39-40判定全等三角形的第二种方法“角边角”定理 两角和它们的夹边对应相等的两三角形全等(可以简写成“角边角”或“ASA”) 书写格式: 在ABC和A1B1C1中 ABC A1B1C1(ASA) 三、小组合作学习1.如下图,D在AB上,E在AC上,AB=AC,B=C求证:AD=AE 证明:在 和 中 ADC_ (_ ) AD=AE(_ )2.观察下图中的两个三角形,它们全等吗?请说明理由 11、如图:在ABC和DBC中,1=2,3=4,P是BC上任一点。求证:PA=PD。证明:在ABC和DBC中
10、1=2( ) BC=BC ( )3=4( )ABC DBC( )AB =_( )在ABP和DBP中 AB=_ ( ) 1 = 2 ( ) BP = BP ( ) ABP DBP( )_=_( )四、阅读例题: P96 例3 例4五评价反思 概括总结 至此,我们有三种判定三角形全等的方法: 1全等三角形的定义 2判定定理: 边角边(SAS) 角边角(ASA) 推证两三角形全等时,要善于观察,寻求对应相等的条件,从而获得解题途径六、作 业: 122 三角形全等的判定(三)学习目标 1三角形全等的“边边边”的条件 2了解三角形的稳定性 3经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的
11、过程学习重点 三角形全等的条件学习难点 寻求三角形全等的条件 学习方法:自主学习与小组合作探究学习过程: 一回顾思考: 1(1)三角形中已知三个元素,包括哪几种情况? 三个角、三个边、两边一角、两角一边 (2)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?三种:定义_;“SAS”公理_“ASA”定理_二、新课 1. 回忆前面研究过的全等三角形 已知ABCABC,找出其中相等的边与角 图中相等的边是:AB=AB、BC=BC、AC=AC 相等的角是:A=A、B=B、C=C2.已知三角形ABC你能画一个三角形与它全等吗?怎样画? 阅读教材P42-43 归纳:三边对应相等的两个三角形全等
12、,简写为“边边边”或“SSS” 书写格式: 在ABC和A1B1C1中 ABCA1B1C1(SSS)3. 小组合作学习(1)如图,ABC是一个钢架,AB=AC,AD是连结点A与BC中点D的支架求证:ABDACD 证明:D是BC的中点 _ 在ABD和ACD中 ( ) (2)如图,已知AC=FE、BC=DE,点A、D、B、F在一条直线上,AD=FB要用“边边边”证明ABCFDE,除了已知中的AC=FE,BC=DE以外,还应该有一个条件:_,怎样才能得到这个条件?_ _(3)如图,AB=AC, AD是BC边上的中线P是AD 的一点,求证:PB=PC4.三角形的稳定性: 生活实践的有关知识:用三根木条钉
13、成三角形框架,它的大小和形状是固定不变的,而用四根木条钉成的框架,它的形状是可以改变的三角形的这个性质叫做三角形的稳定性所以日常生活中常利用三角形做支架就是利用三角形的稳定性例如屋顶的人字梁、大桥钢架、索道支架等(阅读P98) 三、阅读教材例题: P42 例5四自学检测课本P43练习1.2五评价反思 概括总结 1. 本节课我们探索得到了三角形全等的条件,又发现了证明三角形全等的一个规律SSS并利用它可以证明简单的三角形全等问题2.到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?定义_;“SAS”公理_“ASA”定理_“SSS”定理_六作业 122 三角形全等的判定(四)学习目标 1
14、掌握三角形全等的“角角边”条件 2能运用全等三角形的条件,解决简单的推理证明问题学习重点 已知两角一边的三角形全等探究学习难点 灵活运用三角形全等条件证明学习方法:自主学习与小组合作探究学习过程: 一温故知新:1.我们已经学习过可以作为判别两三角形全等的方法有几种?各是什么?2.三角形中已知两角一边有几种可能? 1两角和它们的夹边 2两角和其中一角的对边二、新课1读一读,想一想,画一画,议一议两个角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)书写格式: 在ABC和A1B1C1中 ABCA1B1C1(AAS)2.定理证明已知:如图,在ABC和DEF中,A=D,B=
15、E,BC=EF,求证:ABC与DEF 证明:A+B+C=D+E+F=180 A=D,B=E A+B=D+E C=F 在ABC和DEF中 ABCDEF(ASA) 两个角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)四小组合作学习 1.如下图,D在AB上,E在AC上,AB=AC,B=C求证:AD=AE2下图中,若AE=BC则这两个三角形全等吗?请说明理由 3.课本P43习1、23五评价反思 概括总结 1. 本节课我们探索得到了三角形全等的条件,又发现了证明三角形全等的一个规律AAS并利用它可以证明简单的三角形全等问题2.可以作为判别两三角形全等的常用方法有几种?各是什
16、么? “SAS”公理_ “ASA”定理_ “SSS”定理_“AAS”定理_六作业 122三角形全等的判定(五)-直角三角形全等的判定 学习目标1、经历探索直角三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;2、掌握直角三角形全等的条件,并能运用其解决一些实际问题。3、在探索直角三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单推理。学习重点运用直角三角形全等的条件解决一些实际问题。学习难点熟练运用直角三角形全等的条件解决一些实际问题。学习方法:自主学习与小组合作探究学习过程:想一想,填一填:1、判定两个三角形全等常用的方法: 、 、 、 2、如图,RtABC中,直角边是
17、 、 , 斜边是 3、如图,ABBE于C,DEBE于E,(1)若A=D,AB=DE,则ABC与DEF (填“全等”或“不全等” )根据 (用简写法)(2)若A=D,BC=EF,则ABC与DEF (填“全等”或“不全等” )根据 (用简写法)(3)若AB=DE,BC=EF,则ABC与DEF (填“全等”或“不全等” )根据 (用简写法)(4)若AB=DE,BC=EF,AC=DF则ABC与DEF (填“全等”或“不全等” )根据 (用简写法)探究学习(一)探索新知: 1.阅读教材P41-P43并作出三角形(动手操作):2、与教材中的三角形比较,是否重合?3、从中你发现了什么? 斜边与一直角边对应相
18、等的两个直角三角形全等()(二)自学检测:1 如图,ABC中,AB=AC,AD是高,则ADB与ADC (填“全等”或“不全等” )根据 (用简写法)2 如图,CEAB,DFAB,垂足分别为E、F,(1)若AC/DB,且AC=DB,则ACEBDF,根据 (2)若AC/DB,且AE=BF,则ACEBDF,根据 (3)若AE=BF,且CE=DF,则ACEBDF,根据 (4)若AC=BD,AE=BF,CE=DF。则ACEBDF,根据 (5) 若AC=BD,CE=DF(或AE=BF),则ACEBDF,根据 3、判断两个直角三角形全等的方法不正确的有( )(A) 两条直角边对应相等 (B)斜边和一锐角对应
19、相等(C)斜边和一条直角边对应相等 (D)两个锐角对应相等4、如图,B、E、F、C在同一直线上,AFBC于F,DEBC于E,AB=DC,BE=CF,你认为AB平行于CD吗?说说你的理由答: 理由: AFBC,DEBC (已知) AFB=DEC= (垂直的定义)在Rt 和Rt 中 ( ) = ( ) (内错角相等,两直线平行)(三)、例题: 阅读教材例题: (四)小组合作学习:判断题:(1)一个锐角和这个锐角的对边对应相等的两个直角三角形全等。( )(2)一个锐角和锐角相邻的一直角边对应相等的两个直角三角形全等( )(3)一个锐角与一斜边对应相等的两个直角三角形全等( )(4)两直角边对应相等的
20、两个直角三角形全等( )(5)两边对应相等的两个直角三角形全等( )(6)两锐角对应相等的两个直角三角形全等( )(7)一个锐角与一边对应相等的两个直角三角形全等( )(8)一直角边和斜边上的高对应相等的两个直角三角形全等( )评价反思 概括总结 六种判定三角形全等的方法: 1全等三角形的定义 2边边边(SSS) 边角边(SAS) 角边角(ASA) 角角边(AAS)3HL(仅用在直角三角形中)作业 12.3 角平分线的性质(1) 一、学习目标1、能用三角形全等的知识,解释角平分线的原理;2、会用尺规作已知角的平分线二、温故知新如图1,在AOB的两边OA和OB上分别取OM=ON,MCOA,NCO
21、BMC与NC交于C点求证:(1) RtMOCRtNOC(2) MOC=NOC图1三、自主探究 合作展示探究(一)1、依据上题我们应怎样平分一个角呢?2、思考:把上面的方法改为“在已知AOB的两边上分别截取OM=ON,使MC=NC,连接OC,则OC即为AOB的平分线。”结论是否仍然成立呢?图23、受上题的启示,我们可以制作一个如图2所示的平分角的仪器:其中AB=AD,BC=DC将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线你能说明它的道理吗?探究(二)思考:如何作出一个角的平分线呢?已知:AOB求作:AOB的平分线作法:(1)以O为圆心,适当长为半径作弧,
22、分别交OA、OB于M、N(2)分别以M、N为圆心,大于MN的长为半径作弧两弧在AOB内部交于点CBOA(3)作射线OC,射线OC即为所求 请同学们依据以上作法画出图形。议一议: 1、在上面作法的第二步中,去掉“大于MN的长”这个条件行吗?2、第二步中所作的两弧交点一定在AOB的内部吗?探究(三)如图3,OA是BAC的平分线,点O是射线AM上的任意一点.操作测量:取点O的三个不同的位置,分别过点O作OEAB,OD AC,点D、E为垂足,测量OD、OE的长.将三次数据填入下表:观察测量结果,猜想线段OD与OE的大小关系,写出结论: ODOE第一次第二次第三次图4下面用我们学过的知识证明发现:已知:
23、如图4,AO平分BAC,OEAB,ODAC。求证:OE=OD。四、双基检测1、如图5所示,在ABC中,C=,BC=40,AD是BAC的平分线交BC于D,且DC:DB=3:5,则点D到AB的距离是_。2、如图6所示,AOC=BOC,CMOA,CNOB,垂足分别为M、N,则下列结论中错误的是( )ACM=CN B. OM=ON C. MCO= NCO D. ON=CM图7图6ABCD图53、如图7,在RtABC中,BD平分ABC,DEAB于E,则:图中相等的线段有哪些?相等的角呢?哪条线段与DE相等?12.3 角平分线的性质(2) 一、学习目标1、掌握角的平分线的性质;2、能应用角平分线的有关知识
24、解决一些简单的实际问题二、温故知新1、写出命题“全等三角形的对应边相等”的逆命题.1、 写出命题“角平分线上的点到角的两边的距离相等” 的逆命题.三、自主探究 合作展示(一)思考:命题“角平分线上的点到角的两边的距离相等”的逆命题是否是真命题?若是真命题,请给出证明过程。图1已知:如图1,求证:证明:结论: (二)思考:图2如图2所示,要在S区建一个集贸市场,使它到公路、铁路距离相等,离公路与铁路交叉处500m,这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:20000)?图3(三)应用举例例: 如图3,ABC的角平分线BM、CN相交于点P求证:点P到三边AB、BC、CA的距离相等例题
25、反思:四、双基检测图41.如图4,在中, 平分,那么点到直线的距离是cm2.如图5,已知在RtABC中,C=90, BD平分ABC, 交AC于D.图5(1) 若BAC=30, 则AD与BD之间有何数量关系,说明理由;(2) 若AP平分BAC,交BD于P, 求BPA的度数.3、如图6,所示,在ABC中,AB=AC,BDAC,CEAB,垂足分别为D、E,BD、CE相交于点O。求证:AOBC。ABOEDC图6五、学习反思请你对照学习目标,谈一下这节课的收获及困惑。第12章 全等三角形复习 一、复习目标1、掌握全等三角形的概念及其性质;2、会灵活运用全等三角形的判定方法解决问题;3、掌握角平分线的性质
26、并能灵活运用。二、知识再现1、全等三角形的概念及其性质1)全等三角形的定义: 2)全等三角形性质:(1) (2) (3)周长相等 (4)面积相等图1例1如图1, ,BC的延长线交DA于F, 交DE于G, ,求、的度数.例题反思:图22、 全等三角形的判定方法:例2.如图2,AD与BC相交于O,OC=OD,OA=OB,求证:例题反思:例3.如图3,在中,AB=AC,D、E分别在BC、AC边上。且,AD=DE图3 求证:.例题反思:3、角平分线例4.如图4,AD平分BAC,DEAB于E,DFAC于F,且DB=DC,求证:EB=FC图4例题反思:三、双基检测1、下列命题中正确的( ) A全等三角形的
27、高相等 B全等三角形的中线相等 C全等三角形的角平分线相等 D全等三角形对应角的平分线相等2、下列各条件中,不能作出唯一三角形的是( ) A已知两边和夹角 B已知两角和夹边 C已知两边和其中一边的对角 D已知三边3、完成下列证明过程 如图5,中,BC,D,E,F分别在,上,且, ADECBF图5求证:证明:DECBBDE( ),又DEFB(已知),_(等式性质)在EBD与FCE中,_(已证),_(已知),BC(已知),( )EDEF ( )四、拓展提高如图6,AB=CD,AD=BC,O为AC中点,过O点的直线分别与AD、BC相交于点M、N,那么1与2有什么关系?请说明理由。图6若过O点的直线旋转至图、的情况,其余条件不变,那么图中的1与2的关系还成立吗?请说明理由。 47 48