1、已知解析函数实部 22),(yxyxu,求),(yxvyxv2xyv2)(2)(2xxyxxdyv)(2xyxv0)(xCx)(Cxyv 2解:X视为参数有已知解析函数f(z)实部求v(x,y)0)(,)(22222fyxyxu解:3)2sin(21uv2422222cossincosu2)2cos(2uv)2sin()2cos(2)2sin(2223ddddvCv2)2sin(已知解析函数实部3223236),(yxyyxxyxu0)0(f,求v(x,y)223y-12xy+3x=xu解:226y-6xy-6x=yudyxu+dxyu-=dv)y-6xy+y3x+d(-2x=)dy3y-12
2、xy+(3x+)dx6y-6xy-(6x=dv32232222C+y-6xy+y3x+-2x=v(x,y)322322y-),(xyxu已知解析函数实部 ,求),(yxv-2y=yu2x,=xuxdyydxdy22 xu+dxyu-=dv解:CxyCxdyydxxdyydxvxyxx22222)0,()0,0(),()0,(0.,f(2)xy=v(x,y)22y已知解析函数实部求ivuzf)(2222222)(x=yv,x2xy-=xvyxyy解:2222222222222222z1=)2()z(z1=)y-2xyi-(x)(x1=)(x2xyi-)(x=xvi+yv=f(z)yyyxy计算:
3、lzzzdze)1(221 iz)()1(2izizzezzdzezzlzzzdze)1(2dzizizzelz)()(/iiei)(2)1cos1(sinidiiel)()(/l为圆奇点为奇点为z=0,z=i,z=-i 在在l内只有内只有z=i解:;,3,2,1,0,nzdzelnz1zlnzzdze0ieizdzelz220lnzzdze011)!1(2zznnedzdni)!1(2ni计算计算:l为圆为圆解解:n 0n=1n 1求:(1)dzzzz4|sin(2)dzzzz)3211(4|解:0sin2sin04|zzzidzzz 321)3211(()及4|4|4|dzzzdzdzzz
4、zzzCzrrzCdzzzze)2,1(:)2)(1(计算积分,10 rCzdzzzze)2)(1(izzeizz0)2)(1(2,21 r21CC21)2(Czdzzzzei1)2(2zzzzeiiiei32,2r321CCC解:32)1(32Czdzzzzeiei2)1(232zzzzeiieiieiei3322CzCzzzzzd)1(e)2;d)1(cos)1225.12)(cos)!15(2d)1(cos51)4(5|izizzzzC求下列积分的值,其中C为正向圆周:|z|=r 1.解:(1)函数在C内的z=1处不解析,但cosz在C内却处处解析)41sin(2)()(2)()()()()()(22222221iizeizeidzizizedzizizedzizzizzczczz