1、牛顿运动定律的应用(习题课)共2课时一、教学目标1物理知识方面的要求:(1)巩固记忆牛顿第二定律内容、公式和物理意义;(2)掌握牛顿第二定律的应用方法。2通过例题分析、讨论、练习使学生掌握应用牛顿定律解决力学问题的方法,培养学生的审题能力、分析综合能力和运用数学工具的能力。3训练学生解题规范、画图分析、完善步骤的能力。二、重点、难点分析1本节为习题课,重点内容是选好例题,讲清应用牛顿第二定律解决的两类力学问题及解决这类问题的基本方法。2应用牛顿第二定律解题重要的是分析过程、建立图景;抓住运动情况、受力情况和初始条件;依据定律列方程求解。但学生往往存在重结论、轻过程,习惯于套公式得结果,所以培养
2、学生良好的解题习惯、建立思路、掌握方法是难点。三、教具投影仪、投影片、彩笔。四、主要教学过程(一)引入新课牛顿第二定律揭示了运动和力的内在联系。因此,应用牛顿第二定律即可解答一些力学问题。我们通过以下例题来体会应用牛顿第二定律解题的思路、方法和步骤。(二)教学过程设计1已知受力情况求解运动情况例题1(投影) 一个静止在水平面上的物体,质量是2kg,在水平方向受到5.0N的拉力,物体跟水平面的滑动摩擦力是2.0N。1)求物体在4.0秒末的速度;2)若在4秒末撤去拉力,求物体滑行时间。(1)审题分析这个题目就是根据已知的受力情况来求物体的运动情况。前4秒内运动情况:物体由静止在恒力作用下做匀加速直
3、线运动,t=4.0s。受力情况:F=5.0N,f=2.0N,G=N;初始条件:v0=0;研究对象:m=2.0kg。求解4秒末的速度vt。4秒后,撤去拉力,物体做匀减速运动,vt=0。受力情况:G=N、f=2.0N;初始条件:v0=vt,求解滑行时间。(2)解题思路研究对象为物体。已知受力,可得物体所受合外力。根据牛顿第二定律可求出物体的加速度,再依据初始条件和运动学公式就可解出前一段运动的末速度。运用同样的思路也可解答后一段运动的滑行距离。(3)解题步骤(投影)解:确定研究对象,分析过程(画过程图),进行受力分析(画受力图)。前4秒 根据牛顿第二定律列方程:水平方向 F-f=ma竖直方向 N-
4、G=04秒后 竖直方向N-G=0水平方向-f=ma引导学生总结解题步骤:确定对象、分析过程、受力分析、画图、列方程、求解、检验结果。(4)讨论:若无第一问如何解?实际第一问的结果是第二问的初始条件,所以解题的过程不变。(5)引申:这一类题目是运用已知的力学规律,作出明确的预见。它是物理学和技术上进行正确分析和设计的基础,如发射人造地球卫星进入预定轨道,带电粒子在电场中加速后获得速度等都属这一类题目。2已知运动情况求解受力情况例题2(投影) 一辆质量为1.0103kg的小汽车正以10m/s的速度行驶,现在让它在12.5m的距离内匀减速地停下来,求所需的阻力。(1)审题分析这个题目是根据运动情况求
5、解汽车所受的阻力。研究对象:汽车m=1.0103kg;运动情况:匀减速运动至停止vt=0,s=12.5m;初始条件:v0=10m/s,求阻力f。(2)解题思路由运动情况和初始条件,根据运动学公式可求出加速度;再根据牛顿第二定律求出汽车受的合外力,最后由受力分析可知合外力即阻力。(3)解题步骤(投影)画图分析据牛顿第二定律列方程:竖直方面 N-G=0水平方面 f=ma=1.0103(-4)N=-4.0103Nf为负值表示力的方向跟速度方向相反。(4)引导学生总结出解题步骤与第一类问题相同。(5)引申:这一类题目除了包括求出人们熟知的力的大小和方向,还包括探索性运用,即根据观测到的运动去认识人们还
6、不知道的物体间的相互作用的特点。牛顿发现万有引力定律,卢瑟福发现原子内部有个原子核都属于这类探索。3应用牛顿第二定律解题的规律分析(直线运动)题目类型流程如下由左向右求解即第一类问题,可将vt、v0、s、t中任何一个物理量作为未知求解。由右向左求解即第二类问题,可将F、f、m中任一物理量作为未知求解。若阻力为滑动摩擦力,则有F-mg=ma,还可将作为未知求解。如:将例题2改为一物体正以10m/s的速度沿水平面运动,撤去拉力后匀减速滑行12.5m,求物体与水平面间动摩擦因数。据牛顿第二定律F合=ma 有-mg=ma4物体在斜向力作用下的运动例题3(投影) 一木箱质量为m,与水平地面间的动摩擦因数
7、为,现用斜向右下方与水平方向成角的力F推木箱,求经过t秒时木箱的速度。解:(投影)画图分析:木箱受4个力,将力F沿运动方向和垂直运动方向分解:水平分力为Fcos竖直分力为Fsin据牛顿第二定律列方程竖直方向 N-Fsin-G=0 水平万向 Fcos-f=ma 二者联系 f=N 由式得N=Fsinmg 代入式有 f=(Fsinmg)可见解题方法与受水平力作用时相同。(三)巩固练习图41如图4所示,质量为4 kg的物体静止于水平面上,物体与水平面间的动摩擦因数为0.5,物体受到大小为20 ,与水平方向成角斜向上的拉力F作用时沿水平面做匀加速运动,求物体的加速度是多大?(取10 m/s2)解析:以物
8、体为研究对象,其受力情况如图5所示,建立平面直角坐标系把F沿两坐标轴方向分解,则两坐标轴上的合力分别为图5物体沿水平方向加速运动,设加速度为,则轴方向上的加速度,轴方向上物体没有运动,故y,由牛顿第二定律得所以又有滑动摩擦力以上三式代入数据可解得物体的加速度a=0.58 m/s2.图6小结:当物体的受力情况较复杂时,根据物体所受力的具体情况和运动情况建立合适的直角坐标系,利用正交分解法来解.2一斜面AB长为10 ,倾角为,一质量为kg的小物体(大小不计)从斜面顶端A点由静止开始下滑,如图6所示(取10 m/s2)(1)若斜面与物体间的动摩擦因数为0.5,求小物体下滑到斜面底端B点时的速度及所用
9、时间.(2)若给小物体一个沿斜面向下的初速度,恰能沿斜面匀速下滑,则小物体与斜面间的动摩擦因数是多少?解析:(1)以小物体为研究对象,其受力情况如图7所示,建立直角坐标系,把重力图7沿轴和轴方向分解:小物体沿斜面即轴方向加速运动,设加速度为,则x,物体在轴方向没有发生位移,没有加速度则y,由牛顿第二定律得,所以又所以 设小物体下滑到斜面底端时的速度为,所用时间为,小物体由静止开始匀加速下滑,由得由得 (2)小物体沿斜面匀速下滑时,处于平衡状态,其加速度,则在图7的直角坐标中,由牛顿第二定律,得又所以所以,小物体与斜面间的动摩擦因数小结:若给物体一定的初速度,当tg时,物体沿斜面匀速下滑;当tg
10、(mgcosmgsin)时,物体沿斜面减速下滑;当tg(mgcosmgsin)时,物体沿斜面加速下滑.3静止在水平地面上的物体的质量为2 kg,在水平恒力F推动下开始运动,4 s末它的速度达到4 m/s,此时将F撤去,又经6 s物体停下来,如果物体与地面的动摩擦因数不变,求F的大小.解析:物体的整个运动过程分为两段,前4 s物体做匀加速运动,后6 s物体做匀减速运动.前4 s内物体的加速度为 设摩擦力为F,由牛顿第二定律得 后6 s内物体的加速度为 物体所受的摩擦力大小不变,由牛顿第二定律得 由可求得水平恒力F的大小为小结:解决动力学问题时,受力分析是关键,对物体运动情况的分析同样重要,特别是
11、像这类运动过程较复杂的问题,更应注意对运动过程的分析.在分析物体的运动过程时,一定弄清整个运动过程中物体的加速度是否相同,若不同,必须分段处理,加速度改变时的瞬时速度即是前后过程的联系量.分析受力时要注意前后过程中哪些力发生了变化,哪些力没发生变化.图84如图8所示,质量为的物块A和质量为的物块B与地面的摩擦均不计.在已知水平推力F的作用下,A、B做加速运动.A对B的作用力为多大?解析:取A、B整体为研究对象,其水平方向只受一个力F的作用根据牛顿第二定律知:()取B为研究对象,其水平方向只受A的作用力F1,根据牛顿第二定律知:1故1小结:对连结体(多个相互关联的物体)问题,通常先取整体为研究对
12、象,然后再根据要求的问题取某一个物体为研究对象. (四)课堂小结(引导学生总结)1应用牛顿第二定律解题可分为两类:一类是已知受力求解运动情况;一类是已知运动情况求解受力。2不论哪种类型题目的解决,都遵循基本方法和步骤,即分析过程、建立图景、确定研究对象、进行受力分析、根据定律列方程,进而求解验证效果。在解题过程中,画图是十分重要的,包括运动图和受力图,这对于物体经过多个运动过程的问题更是必不可少的步骤。3在斜向力作用下,可将该力沿运动方向和垂直运动方向分解,转化为受水平力的情形。解题方法相同。五、说明1本课以高中物理课本第一册(必修)为依据。例题1在原题基本上增加了一个运动过程,目的是强调过程
13、图和受力图的重要性。因为有些学生对此不够重视而导致错误,尤其是以后遇到复杂问题的处理时更加突出,比如不注意各段运动中物体受力情况的变化和与之相关的加速度的变化,用前一段运动的加速度代入后一段运动方程进行运算,得出错误结果。但教材中节练习题和章习题中没有这类题目,所以可根据学生情况加以取舍。2解题过程反复强调分析方法、解题步骤,意在培养学生的良好解题习惯和书写规范,由于解题过程要力求详尽,故本课密度较大。为此,解题过程可利用投影片以节省时间。3例题中增加了斜向力作用的情形,目的是使学生注意竖直方向运动方程的建立,对水平方向物理量的影响。因为学生长时间只考虑水平方向受力,就会忽视了竖直方向的受力分析,认为在任何情况下都无须考虑竖直方向受力。另外,了解到斜向力分解后的解题方法仍是前面所述的基本方法,从而体会对复杂问题的处理方法,以巩固基本知识、基本方法。但巩固练习中有提及建立坐标系和正交分解的题目,这一部分亦可据学生情况取舍。12 / 12